PROSIDING

SEMINAR NASIONAL
MATEMATIKA\&
PENDIDIKAN MATEMATIKA

Tema :

"Peran Matematika dan Pembelajarannya dalam Meningkatkan Daya Saing Bangsa"

PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNIVERSITAS JEMBER

$$
2011
$$

PROSIDING

SEMINAR NASIONAL
MATEMATIKA \&
PENDIDIKAN MATEMATIKA

Tema :
"Peran Matematika dan Pembelajarannya dalam Meningkatkan Daya Saing Bangsa"

PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNIVERSITAS JEMBER

Susunan Tim Penyunting

Pelindung	Drs. Imam Muchtar, S.H, M.Hum (Dekan FKIP Universitas Jember)
Penasehat	: Prof. Dr. Sunardi, M.Pd. (Pembantu Dekan FKIP Universitas Jember)
Ketua Tim Editor	: Dr. Hobri, S.Pd, M.Pd.
Editor Bidang Matematika (Pure Mathematics)	
	: Drs. Slamin, M.Comp.Sc, Ph.D.
	Drs. Dafik, M.Sc, Ph.D.
	Drs. Toto' Bara Setiawan, M.Si.
	Susi Setiawani, S.Si, M.Sc.
	Drs. Suharto, M.Kes.
	Arif Fatahillah, S.Pd, M.Si.
Editor Bidang Pendidikan Matematika (Mathematics Education)	
: Prof. Dr. Sunardi, M.Pd.	
Dr. Hobri, S.Pd, M.Pd.	
Dr. Susanto, M.Pd.	
Dra. Dinawati Trapsilasiwi, M.Pd.	
Dra. Titik Sugiarti, M.Pd.	
Drs. Didik Sugeng Pambudi, M.S.	
Dian Kurniati, S.Pd, M.Pd.	
	Nurcholif Diah Sri Lestari, S.Pd, M.Pd.

Makalah Utama

Halaman
Peranan Pendidikan Matematika dalam Meningkatkan Daya SaingBangsaSuwarsono
Pembelajaran Geometri Sekolah dan Problematikanya $10-19$
SunardiOpen Problems in the Constructionof Large Directed Graphs$20-34$
Dafik \& Slamin
Makalah Matematika Murni
Super Edge-Antimagic Total Labeling Of Mountain Graph $35-43$ Alfin Fajriatin, Dafik, \& Hobri
Perangkingan Berdasarkan Jumla'ı Dominasi Pada Metode $44-45$
Electre II
Arif Junaidi, M. Isa Irawan, Imam Mukhlash
Super Edge-Antimagic Total Labeling Of Diamond Ladder Graph $55-64$
Laelatus Sya'diyah, Dafik, \& Antionius C.P.
Peramalan Jumlah Produksi Batik Dengan Menggunakan65-73
Metode Fuzzy Mamdani
Enny Durratul Arifah, Mohammad Isa Irawan, \& Imam Mukhlas
Super Edge-Antimagic Total Labeling Of Triangular Book Graph $74-80$
Fitriana Eka Chandra, Dafik, \& Slamin
Total Vertex Irregularity Strenght Dari Gabungan Graf Cycle Dan 81-90
Gabungan Graf Star
Fitriana, Slamin, \& Hobri
Pemodelan Pertumbuhan Tanaman Jagung Menggunakan L - 91-99
Systems
Juhari, \& Mohammad Hasan
Algoritma Ant Colony Pada Penjadwalan Produksi Baja$100-107$
Nurul Imamah, Imam Mukhlas

Pemodelan Jaringan Biokimia Pada Proses Glikolisis Menggunakan Petri Net Siti Alfiah	$108-112$
Algoritma Dan Sifat Transformasi Pecahan Kontinyu Suryadi \&Mohammad Hasan	$113-119$
Nilai Total Ketakteraturan Sisi Pada Graf Banana Tree Wara Bhakti Pratiwi, Kristiana Widjaja. \& Slamin	$120-125$
Super Edge Antimagic Total Labeling On Disjoint Union Of Cycle Non Isomorphic Yuni Listiana, Dafik, \& Slamin	$126-133$

Makalah Pendidikan Matematika

Meningkatkan Hasil Belajar Soal Cerita Materi Segiempat melalui Penerapan Teknik Analisis Kesalahan Newman Bagi Siswa Kelas 7 SMP Negeri 1 Sukodono Lumajang (RSBI)
Alfiyah
Pengembangan Perangkat Pembelajaran Matenatika Realistic
Mathematics Education (Rme) Pada Poko'k Bahasan Persegipanjang dan Persegi di Kelas VII
Pratiwi Anggraeni, Hobri, Toto' Bara B.S, \& Dian Kurniati
Kecakapan Generik (Proses) dalam Pemielajaran Matematika pada Siswa SMP Kelas VIII di Kabupaten Bondowoso
Arika Indah Kristiana
Kreativitas Siswa dalam Memecahkan Masalah Matematika Ditinjau
$161-167$
dari Kemampuan Matematika Siswa
Damianus Samo \& Mega Teguh Budiarto
Skema Pembentukan Pola Ditinjau dari Proses Pemecahan Masalah 168-178
Polya
Darmadi

Pengembangan Perangkat Pembelajaran Bilingual Matematika Berdasarkan Whele Brain Teaching Pada Sub Pokok Bahasan Persegi Panjang dan Persegi untuk SMP Kelas VII Semester Genap
 Tahun Ajaran 2010/2011
 Diana Mulyasari, Dafik, \& Hobri

Pengkajian Konsep Matematika dalam Mempersiapkan Proses
Pembelajaran Bagi Guru Prospektif yang Merencanakan Praktek
Pembelajaran di Kelas
Edy Bambang Irawan
Perkembangan Kognitif Siswa Sekolah Dasar di Jember Kota
Berdasarkan Teori Van Hiele
Erfan Yudianto
Kemampuan Berpikir Matematis Rigor Siswa SMP Berkemampuan 201-210 Rendah dalam Menyelesaikan Soal Matematika
Harina Fitriyani

Penerapan Teori Bruner Pada Pembelajaran Kubus dan Balok untuk 211-219 Meningkatkan Hasil Belajar Siswa Kelas VIII E Semester Genap SMP Negeri Sukorambi Tahun Ajaran 2010/2011
Hobri, Misbahul Jannah, Dinawati Trapsilasiwi
Pembelajaran Bangun Kerucut dengan Pendekatan Initiating dan 220-226 Eliciting untuk Membantu Pemahaman Siswa Kelas VIII SMP 06 Diponegoro Wuluhan Kabupaten Jember Indah Wahyuni

Karakteristik Model Penalaran Intuitif Siswa dalam
Menyelesaikan Masalah Geometri
Muniri

Strategi Pembelajaran Matematika dengan Menggunakan Model	$237-244$
PERMEN KEMPYENGAN Siswa Kelas X SMKN 2 Lumajang	
Tahun Pelajaran 2008/2009	
Mustofa Khilmi	
Profil Pemecahan Masalah Matematika Open-Ended Siswa Kelas V	$245-252$
Sekolah Dasar yang Berkemampuan Matematika Tinggi ditinjau Berdasarkan Perbedaan Gender Nurcholif Diah Sri Lestari	

Profile Of Creativity in Solving Geometry Problems of Junior High
253-260
School Students Based on Cognitive Styles of Reflective and
Impulsive
Ontang Manurung

Identifikasi Kesulitan Belajar Materi Persamaan Kuadrat Siswa	261-266
Kelas X-Multi Media SMK Negeri 1 Jember	
Priwahyu Hartanti	
Meningkatkan Hasil Belajar Siswa dalam Memahami Konsep	267-274
Penjumlahan Pecahan dengan Menggunakan Metode MPL dan	
Kooperatif	
Puji Hadi	
Pengembangan Perangkat Pembelajaran Bilingual Matematika	275-281
Berbasis RME (Realistic Mathematics Education) Pada Pokok	
Bahasan Kubus dan Balek Kelas VIII Semester Genap Tahun	
Pelajaran 2010/2011	
Rizki Budiarti, Dafik, Susi Setiawani, \& Dian Kurniati	
Pengembangan Perangkat Pembelajaran Statistika Matematika I	282-290
Berbasis Web	
Susi Setiawani	
Pembelajaran Kooperatif Tipe TGT (Teams Games Tournaments)	291-297
Pada Materi Persegipanjang dan Persegi di Kelas VII SMP	
Suwarno	
Guru Matematika di Rintisan Sekolah Bertaraf Internasional (RSBI)	
SMP Negeri 3 Jember	
Tria Renda Arkasari	
Strategi Metakognisi Siswa Sekolah Menengah Pertama dalam	302-311
Penyelesaian Sistem Persamaan Liner dengan Dua Variabel ditinjau dari Level Pemahaman Konsep Matematika Zahra Chairani	

Makalah Matematika Murni (2)

Super Edge-Antimagic Total Labeling Of Stair Graph
312-320
Ira Aprilia, Dafik, \& Susi Setiawani
Makalah Pendidikan Matematika (2)
Pengembangan Lembar Kegiatan Siswa (LKS) Bilingual dengan
Pendekatan Kontekstual Pada Pokok Bahasan Segiempat Kelas VII
Semester Genap
Rezkie Dwi Wahyuni

Super Edge-antimagic Total Labeling of Stair Graph

Ira Aprilia
Mathematics Education Department
FKIP University of Jember
rara.chieby@gmail.com
Dafik, Susi Setiawani
Mathematics Education Department
FKIP University of Jember
d.dafik@gmail.com
and
susisetiawani.fkip@unej.ac.id

Abstract

An (a, d)-edge-antimagic total labeling of G is a one-to-one mapping f taking the vertices and edges onto $\{1,2,3, \ldots, p+q\}$. So that the edge-weights $w(u v)=$ $f(u)+f(v)+f(u v), u v \in E(G)$, form an arithmetic progression $\{a, a+d, a+$ $2 d, \ldots, a+(q-1) d\}$, where $a>0$ and $d \geq 0$ are two fixed integers, and form an arithmetic sequence with first term a and common difference d. Such a graph G is called super if the smallest possible labels appear on the vertices. In this paper we survey what is known about super edge-antimagic total labelings properties of disconnected Stair graph $\left(S t_{n}\right)$.

Keywords : (a,d)-edge-antimagic total labeling, super (a, d)-edge-antimagic total labeling, Stair graph.

1 Introduction

In mathematics and computer science, graph theory a content to study of graphs, mathematical structures used to model pairwise relations between objects from a certain collection. A "graph" in this context refers to a collection of vertices or 'nodes' and a collection of edges that connect pairs of vertices. A graph may be undirected, meaning that there is no distinction between the two vertices associated with each edge, or its edges may be directed from one vertex to another. Graphs are one of the prime objects of study in discrete mathematics.
A labeling of a graph is any mapping that sends some set of graph elements to a set of positive integers. If the domain is the vertex-set or the edge-set, the labelings are called, respectively, vertex labelings or edge labelings. Moreover, if the domain is $V(G) \cup E(G)$ then the labelings are called total labelings. We define the edge-weight of an edge $u v \in E(G)$ under a total labeling to be the sum of the vertex labels corresponding to vertices u, v and edge label corresponding to edge $u v$. If such a labeling exists then G is said to be an (a, d)-edge-antimagic total graph. Such a graph G is called super if the smallest possible labels appear on the vertices. Thus, a super (a, d)-edge-antimagic total graph is a graph that admits a super (a, d)-edge-antimagic total labeling.

Definitions of (a, d)-EAT labeling and super (a,d)-EAT labeling were introduced by Simanjuntak at al [25]. These labelings are natural extensions of the notion of edgemagic labeling, dened by Kotzig and Rosa [17], where edge-magic labeling is called magic valuation, and the notion of super edge-magic labeling, which was defined by Enomoto, Llado, Nakamigawa and Ringel [11]. in [19], is natural extension of the notion of edge-magic labeling defined by Kotzig and Rosa [2] (see also [17], [18], [12] and [22]). The super (a, d)-edge-antimagic total labeling is natural extension of the notion of super edge-magic labeling which was defined by Enomoto et al. in [14].

In this paper we investigate the existence of super (a, d)-edge-antimagic total labelings of Stair graph, denoted by $S t_{n}$.

2 Research Methods and Techniques

The research techniques are as follows: (1) calculate the number of vertex p and size q on the graph $S t_{n} ;(2)$ determine the upper bound for values of $d ;(3)$ determine the $E A V L$ (edge-antimagic vertex labeling) of $S t_{n} ;(4)$ if the label of $E A V L$ is expandable, then we continue to determine the bijective function of $E A V L$; (5) label the graph $S t_{n}$ with $S E A T L$ (super-edge antimagic total labeling) with feasible values of d and (6) determine the bijective function of super-edge antimagic total labeling of graph $S t_{n}$.

3 Some Useful Lemmas

We start this section by a necessary condition for a graph to be super (a,d)-edge antimagic total, providing a least upper bound for feasible values of d.

Lemma 1 If $a(p, q)$-graph is super (a, d)-edge antimagic total then $d \leq \frac{2 p+q-5}{q-1}$.
Proof. Assume that a (p, q)-graph has a super (a, d)-edge antimagic total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$. The minimum possible edge-weight in the labeling f is at least $1+2+p+1=p+4$. Thus, $a \geq p+4$. On the other hand, the maximum possible edge-weight is at most $(p-1)+p+(p+q)=3 p+q-1$. So we obtain $a+(q-1) d \leq 3 p+q-1$ which gives the desired upper bound for the difference d.

4 Stair Graph

Let's key n is the numbers of each stair. Stair graph denoted by $S t_{n}$ is a connected graph with vertex set $V\left(S t_{n}\right)=\left\{x_{i}, y_{i}, z_{j}, q_{k} ; 1 \leq i \leq n, 1 \leq j \leq 2 n+2,1 \leq k \leq 4 n\right\}$, and $E\left(S t_{n}\right)=\left\{x_{i} y_{i}, x_{i} z_{2 i \pm 1}, y_{i} z_{2 i+2}, y_{i} z_{2 i}, y_{i} q_{4 i-3}, y_{i} q_{4 i-2}, x_{i} q_{4 i-1}, x_{i} q_{4 i} ; 1 \leq i \leq n\right\} \cup$ $\left\{q_{i} q_{i+1} ; i\right.$ odd, $\left.1 \leq i \leq 4 n-1\right\} \cup\left\{z_{i} z_{i+1} ; i\right.$ odd, $\left.1 \leq i \leq 2 n+1\right\} \cup\left\{z_{i} q_{2 i-1}, z_{i} q_{2 i} ; i\right.$ odd, $1 \leq$ $i \leq 2 n-1\} \cup\left\{z_{i} q_{2 i-4}, z_{i} q_{2 i-5} ; i\right.$ even, $\left.4 \leq i \leq 2 n+2\right\}$ Thus $\left|V\left(S t_{n}\right)\right|=p=8 n+2$ and $\left|E\left(S t_{n}\right)\right|=q=16 n+1$.

If Stair graph, has a super (a, d)-edge-antimagic total labeling then, for $p=8 n+2$ and $q=16 n+1$, it follows from Lemma 1 , that the upper bound of d is $d \leq 2$ or
$d \in\{0,1,2\}$.

$$
\begin{aligned}
d & \leq \frac{2 p+q-5}{q-1} \\
& =\frac{2(8 n+2)+16 n+1-5}{16 n+1-1} \\
& =\frac{16 n+4+16 n-4}{16 n} \\
& =\frac{32 n}{16 n} \\
& \leq 2
\end{aligned}
$$

The following lemma describes an ($a, 1$)-edge-antimagic vertex labeling for Stair Graph.

Theorem 1 If $n \geq 2$, then the Stair Graph connected $S t_{n}$ has an ($a, 1$)-edge-antimagic vertex labeling.

Proof. Define the vertex labeling $\alpha_{1}: V\left(S t_{n}\right) \rightarrow\{1,2, \ldots, 8 n+2\}$ in the following way:

$$
\begin{gathered}
\alpha_{1}\left(x_{i}\right)=8 i-3, \text { for } 1 \leq i \leq n \\
\alpha_{1}\left(y_{i}\right)=8 i-2 \text {, for } 1 \leq i \leq n \\
\alpha_{1}\left(z_{j}\right)=4 j-3-\frac{\left((-1)^{j}+1\right) 3}{2}, \text { for } 1 \leq j \leq 2 n+2, \text { any } l \\
\alpha_{1}\left(q_{k}\right)=2 k+\frac{\left((-1)^{k+1}+1\right)}{2}, \text { for } 1 \leq k \leq 4 n, \text { any } l
\end{gathered}
$$

The vertex labeling α_{1} is a bijective function. The edge-weights of $S t_{n}$, under the labeling α_{1}, constitute the following sets :

$$
\begin{gathered}
w_{\alpha_{1}}^{1}\left(x_{i} y_{i}\right)=16 i-5, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{2}\left(x_{i} z_{2 i+1}\right)=16 i-2, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{3}\left(x_{i} z_{2 i-1}\right)=16 i-10, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{4}\left(x_{i} q_{4} i\right)=16 i-3, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{5}\left(x_{i} q_{4 i-1}\right)=16 i-4, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{6}\left(y_{i} z_{2 i+2}\right)=16 i, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{7}\left(y_{i} z_{2 i}\right)=16 i-8, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{8}\left(y_{i} q_{4 i-2}\right)=16 i-6, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{9}\left(y_{i} q_{4 i-3}\right)=16 i-7, \text { for } 1 \leq i \leq n \\
w_{\alpha_{1}}^{10}\left(z_{i} q_{2 i-1}\right)=8 i-4, \text { for } 1 \leq i \leq 2 n-1, \text { odd }
\end{gathered}
$$

$$
\begin{aligned}
w_{\alpha_{1}}^{11}\left(z_{i} q_{2 i}\right) & =8 i-3, \text { for } 1 \leq i \leq 2 n-1, \text { odd } \\
w_{\alpha_{1}}^{13}\left(z_{i} q_{2 i-4}\right) & =8 i-14, \text { for } 4 \leq i \leq 2 n+2, \text { even } \\
w_{\alpha_{1}}^{13}\left(z_{i} q_{2 i-5}\right) & =8 i-15, \text { for } 4 \leq i \leq 2 n+2, \text { even } \\
w_{\alpha_{1}}^{14}\left(q_{i} q_{i+1}\right) & =4 i+3, \text { for } 1 \leq i \leq 4 n-1, \text { odd } \\
w_{\alpha_{1}}^{15}\left(z_{i} z_{i+1}\right) & =8 i-5, \text { for } 1 \leq i \leq 2 n+1, \text { odd }
\end{aligned}
$$

It is not difficult to see that the set $\bigcup_{t=1}^{15} w_{\alpha_{1}}^{t}=\{3,4,5, \ldots, 16 n+3\}$ consists of consecutive integers. Thus α_{1} is a (3,1)-edge antimagic vertex labeling.

Theorem 2 If $n \geq 2$ then the graph $S t_{n}$ has a super $(24 n+6,0)$-edge-antimagic total labeling and a super ($8 n+6,2$)-edge-antimagic total labeling.

Proof. Case 1. for $d=0$
Label the vertices of $S t_{n}$ and label the edges with the following way.

$$
\begin{aligned}
\alpha_{2}\left(x_{i} y_{i}\right) & =24 n-16 i+11, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(x_{i} z_{2 i+1}\right) & =24 n-16 i+8, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(x_{i} z_{2 i-1}\right) & =24 n-16 i+16, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(x_{i} q_{4} i\right) & =24 n-16 i+9, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(x_{i} q_{4 i-1}\right) & =24 n-16 i+10, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(y_{i} z_{2 i+2}\right) & =24 n-16 i+6, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(y_{i} z_{2 i}\right) & =24 n-16 i+14, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(y_{i} q_{4 i-2}\right) & =24 n-16 i+12, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(y_{i} q_{4 i-3}\right) & =24 n-16 i+13, \text { for } 1 \leq i \leq n \\
\alpha_{2}\left(z_{i} q_{2 i-1}\right) & =24 n-8 i+10, \text { for } 1 \leq i \leq 2 n-1, \text { odd } \\
\alpha_{2}\left(z_{i} q_{2 i}\right) & =24 n-8 i+9, \text { for } 1 \leq i \leq 2 n-1, \text { odd } \\
\alpha_{2}\left(z_{i} q_{2 i-4}\right) & =24 n-8 i+20, \text { for } 4 \leq i \leq 2 n+2, \text { even } \\
\alpha_{2}\left(z_{i} q_{2 i-5}\right) & =24 n-8 i+21, \text { for } 4 \leq i \leq 2 n+2, \text { even } \\
\alpha_{2}\left(q_{i} q_{i+1}\right) & =24 n-4 i+3, \text { for } 1 \leq i \leq 4 n-1, \text { odd } \\
\alpha_{2}\left(z_{i} z_{i+1}\right) & =24 n-8 i+11, \text { for } 1 \leq i \leq 2 n+1, \text { odd }
\end{aligned}
$$

The total labeling α_{2} is a bijective function from $V\left(S t_{n}\right) \cup E\left(S t_{n}\right)$ onto the set $\{1,2,3, \ldots, 24 n+3\}$. The edge-weights of $S t_{n}$, under the labeling α_{2}, constitute the sets

$$
\begin{aligned}
W_{\alpha_{2}}^{1} & =\left\{w_{\alpha_{2}}^{1}+\alpha_{2}\left(x_{i} y_{i}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i-5)+(24 n-16 i+11) \\
& =24 n+6 \\
W_{\alpha_{2}}^{2} & =\left\{w_{\alpha_{2}}^{2}+\alpha_{2}\left(x_{i} z_{2 i+1}\right) ; \text { for } 1 \leq i \leq n\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =(16 i-2)+(24 n-16 i+8) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{3}=\left\{w_{\alpha_{2}}^{3}+\alpha_{2}\left(x_{i} z_{2 i-1}\right) \text {; for } 1 \leq i \leq n\right\} \\
& =(16 i-10)+(24 n-16 i+16) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{4}=\left\{w_{\alpha_{2}}^{4}+\alpha_{2}\left(x_{i} q_{4 i}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i-3)+(24 n-16 i+9) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{5}=\left\{w_{\alpha_{2}}^{5}+\alpha_{2}\left(x_{i} q_{4 i-1}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i-4)+(24 n-16 i+10) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{6}=\left\{w_{\alpha_{2}}^{6}+\alpha_{2}\left(y_{i} z_{2 i+2}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i)+(24 n-16 i+6) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{7}=\left\{w_{\alpha_{2}}^{7}+\alpha_{2}\left(y_{i} z_{2 i}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i-8)+(24 n-16 i+14) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{8}=\left\{w_{\alpha_{2}}^{8}+\alpha_{2}\left(y_{i} q_{4 i-2}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i-6)+(24 n-16 i+12) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{9}=\left\{w_{\alpha_{2}}^{9}+\alpha_{2}\left(y_{i} q_{4 i-3}\right) ; \text { for } 1 \leq i \leq n\right\} \\
& =(16 i-7)+(24 n-16 i+13) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{10}=\left\{w_{\alpha_{2}}^{10}+\alpha_{2}\left(z_{i} q_{2 i-1}\right) ; \text { for } 1 \leq i \leq 2 n-1 \text { odd }\right\} \\
& =(8 i-4)+(24 n-8 i+10) \\
& =24 n+6 \\
& W_{\alpha_{2}}^{11}=\left\{w_{\alpha_{2}}^{11}+\alpha_{2}\left(z_{i} q_{2 i}\right) ; \text { for } 1 \leq i \leq 2 n-1 \text { odd }\right\} \\
& =(8 i-3)+(24 n-8 i+9) \\
& =24 n+6
\end{aligned}
$$

$$
\begin{aligned}
W_{\alpha_{2}}^{12} & =\left\{w_{\alpha_{2}}^{12}+\alpha_{2}\left(z_{i} q_{2 i-4}\right) ; \text { for } 4 \leq i \leq 2 n+2 \text { even }\right\} \\
& =(8 i-14)+(24 n-8 i+20) \\
& =24 n+6 \\
W_{\alpha_{2}}^{13} & =\left\{w_{\alpha_{2}}^{13}+\alpha_{2}\left(z_{i} q_{2 i-5}\right) ; \text { for } 4 \leq i \leq 2 n+2 \text { even }\right\} \\
& =(8 i-15)+(24 n-8 i+21) \\
& =24 n+6 \\
W_{\alpha_{2}}^{14} & =\left\{w_{\alpha_{2}}^{14}+\alpha_{2}\left(q_{i} q_{i+1}\right) ; \text { for } 1 \leq i \leq 4 n-1 \text { odd }\right\} \\
& =(4 i+3)+(24 n-4 i+3) \\
& =24 n+6 \\
W_{\alpha_{2}}^{15} & =\left\{w_{\alpha_{2}}^{15}+\alpha_{2}\left(z_{i} z_{i+1}\right) ; \text { for } 1 \leq i \leq 2 n+1 \text { odd }\right\} \\
& =(8 i-5)+(24 n-8 i+11) \\
& =24 n+6
\end{aligned}
$$

It is not difficult to see that the set $\bigcup_{t=1}^{15} W_{\alpha_{2}}^{t}=\{24 n+6,24 n+6, \ldots, 24 n+6\}$ contains an arithmetic sequence with the first term $24 n+6$ and common difference 0 . Thus α_{2} is a super $(24 n+6,0)$-edge-antimagic total labeling. This concludes the proof.

Proof. Case 2. for $d=2$
Label the vertices of $S t_{n}$ and label the edges of α_{3} for super ($a, 2$)-edge antimagic total labeling with the following way.

$$
\begin{aligned}
\alpha_{3}\left(x_{i} y_{i}\right) & =8 n+16 i-5, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(x_{i} z_{2 i+1}\right) & =8 n+16 i-2, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(x_{i} z_{2 i-1}\right) & =8 n+16 i-10, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(x_{i} q_{4} i\right) & =8 n+16 i-3, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(x_{i} q_{4 i-1}\right) & =8 n+16 i-4, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(y_{i} z_{2 i+2}\right) & =8 n+16 i \text {, for } 1 \leq i \leq n \\
\alpha_{3}\left(y_{i} z_{2 i}\right) & =8 n+16 i-8, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(y_{i} q_{4 i-2}\right) & =8 n+16 i-6, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(y_{i} q_{4 i-3}\right) & =8 n+16 i-7, \text { for } 1 \leq i \leq n \\
\alpha_{3}\left(z_{i} q_{2 i-1}\right) & =8 n+8 i-4, \text { for } 1 \leq i \leq n, \text { odd } \\
\alpha_{3}\left(z_{i} q_{2 i}\right) & =8 n+8 i-3, \text { for } 1 \leq i \leq n, \text { odd } \\
\alpha_{3}\left(z_{i} q_{2 i-4}\right) & =8 n+8 i-14, \text { for } 4 \leq i \leq n, \text { even } \\
\alpha_{3}\left(z_{i} q_{2 i-5}\right) & =8 n+8 i-15, \text { for } 4 \leq i \leq n, \text { even } \\
\alpha_{3}\left(q_{i} q_{i+1}\right) & =8 n+4 i+3, \text { for } 1 \leq i \leq 2 n+2, \text { odd } \\
\alpha_{3}\left(z_{i} z_{i+1}\right) & =8 n+8 i-5, \text { for } 1 \leq i \leq 2 n+2, \text { odd }
\end{aligned}
$$

The total labeling α_{3} is a bijective function. The set $\{1,2,3, \ldots, 24 n+3\}$. The edgeweights of $S t_{n}$, under the labeling α_{3}, constitute the sets:

$$
\begin{gathered}
W_{\alpha_{3}}^{1}\left(x_{i} y_{i}\right)=8 n+32 i-10, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{2}\left(x_{i} z_{2 i+1}\right)=8 n+32 i-4, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{3}\left(x_{i} z_{2 i-1}\right)=8 n+32 i-20, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{4}\left(x_{i} q_{4 i}\right)=8 n+32 i-6, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{5}\left(x_{i} q_{4 i-1}\right)=8 n+32 i-8, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{6}\left(y_{i} z_{2 i+2}\right)=8 n+32 i, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{7}\left(y_{i} z_{2 i}\right)=8 n+32 i-16, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{8}\left(y_{i} q_{4 i-2}\right)=8 n+32 i-12, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{9}\left(y_{i} q_{4 i-3}\right)=8 n+32 i-14, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
W_{\alpha_{3}}^{10}\left(z_{i} q_{2 i-1}\right)=8 n+16 i-8, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n}, \text { odd } \\
W_{\alpha_{3}}^{11}\left(z_{i} q_{2 i}\right)=8 n+16 i-6, \text { for } 1 \leq \mathrm{i} \leq \mathrm{n}, \text { odd } \\
W_{\alpha_{3}}^{12}\left(z_{i} q_{2 i-4}\right)=8 n+16 i-28, \text { for } 4 \leq \mathrm{i} \leq \mathrm{n}, \text { even } \\
W_{\alpha_{3}}^{13}\left(z_{i} q_{2 i-5}\right)=8 n+16 i-30, \text { for } 4 \leq \mathrm{i} \leq \mathrm{n}, \text { even } \\
W_{\alpha_{3}}^{14}\left(q_{i} q_{i+1}\right)=8 n+8 i+6, \text { for } 1 \leq \mathrm{i} \leq 2 \mathrm{n}+2, \text { odd } \\
W_{\alpha_{3}}^{15}\left(z_{i} z_{i+1}\right)=8 n+16 i-10, \text { for } 1 \leq \mathrm{i} \leq 2 \mathrm{n}+2, \text { odd }
\end{gathered}
$$

We can found the total labeling $W_{\alpha_{3}}$ with summing $w_{\alpha_{1}}=w_{\alpha_{3}}$ with edge label α_{3}. It is not difficult to see that the set $\bigcup_{t=1}^{15} W_{\alpha_{3}}^{t}=\{8 n+6,8 n+8,8 n+10 \ldots, 40 n+6\}$ contains an arithmetic sequence with the first term $8 n+6$ and common difference 0 . Thus α_{3} is a super $(8 n+6,2)$-edge-antimagic total labeling. This concludes the proof.

5 Conclusion

1. There are a super (a, d)-edge-antimagic total labeling of graph $S t_{n}$, if $n \geq 2$ with $d \in\{0,1,2\}$.

References

[1] Abidin, Z. 2010. Pelabelan Total Super(a,d)-Sisi Antimagic pada Gabungan Saling Lepas Graf Firecracker. Tidak dipublikasikan (Skripsi).
[2] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
[3] Biyadi, K. 2010. Fungsi Bikektif Pelabelan Antimagic Pada Gabungan Saling Lepas Graf Banana Tree. Tidak dipublikasikan (Skripsi). Jember: Universitas Jember.
[4] Chartrand, G, and Oellermann. 1993. Applied and Algoritmic Graph Theory. New York: MacGraw-Hill, inc.
[5] Dafik. 2007. Structural Properties and Labeling of Graph. Australia : Tidak dipublikasikan (Tesis).
[6] Dafik. 2008. Pemodelan Matematika (Buku Diktat Mata Kuliah Pemodelan Matematika). Jember : FKIP Universitas jember.
[7] Dafik, Slamin, Fuad and Riris. 2009. Super Edge-antimagic Total Labeling of Disjoint Union of Triangular Ladder and Lobster Graphs. Yogyakarta: Proceeding of IndoMS International Conference of Mathematics and Applications (IICMA) 2009.
[8] Dafik, M. Miller, J. Ryan and M. Bača, Super edge-antimagic total labelings of $m K_{n, n, n}$, Ars Combinatoria (2006), in press.
[9] Dafik, M. Miller, J. Ryan and M. Bača, Antimagic total labeling of disjoint union of complete s-partite graphs, J. Combin. Math. Combin. Comput., 65 (2008), 41-49.
[10] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math., 309 (2009), 4909-4915.
[11] Fuad, M. 2009. Pelabelan Total Super (a,d)-Sisi Antimagic pada Gabungan Graf Triangular Ladder. Tidak dipublikasikan (Skripsi). Jember: Universitas Jember.
[12] G. Ringel and A.S. Lladó, Another tree conjecture, Bull. Inst. Combin. Appl. 18 (1996), 83-85.
[13] Gallian, J.A. 2009. A Dynamic Survey of Graph Labelling. [serial on line]. http://www.combinatorics.org/Surveys/ds6.pdf. [17 Agustus 2010].
[14] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
[15] Indayani, D.V. 2010. Pelabelan Total Super (a,d)-Sisi Antimagic pada Gabungan Graf Generalized Petersen ($n, 2$). Tidak dipublikasikan (Skripsi). Jember: Universitas Jember.
[16] Lipschutz dan Lipson. 2002. Matematika Diskrit Jilid 2. Jakarta : Salemba Teknika.
[17] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math. 60 (2001), 229-239.
[18] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001), 153-168.
[19] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms (2000), 179-189.
[20] Slamin. 2001. Diregularity of Digraph Close to Moore Bound . Australia : Tidak dipublikasikan (Tesis).
[21] Universitas Jember. 2007. Pedoman Penulisan Karya Ilmiah. Jember: Badan Penerbit Universitas Jember.
[22] W. D. Wallis, E. T. Baskoro, M. Miller and Slamin, Edge-magic total labelings, Austral. J. Combin. 22 (2000), 177-190.
[23] Wijaya, K. 2000. Pelabelan Total Sisi Ajaib. Tidak dipublikasikan (Tesis). Bandung: Institut Teknologi Bandung.

