# PROCEEDINGS IGAM

International Conference on

Agribusiness Marketing

## Hosted By :



FACULTY OF AGRICULTURE, JEMBER UNIVERSITY

25 - 26 JUNE 2012 JEMBER, EAST JAVA, INDONESIA

ISBN : 978-602-9030-09-9



Membangun Generasi Menuju Insan Berprestasi

### Proceedings International Conference on Agribusiness Marketing (ICAM 2012)



Editors: Joni Murti Mulyo Aji Mustapit

Co-editors: Marthin Nanere Muhammad Muaz Mahmud

FACULTY OF AGRICULTURE JEMBER UNIVERSITY JEMBER, EAST JAVA, INDONESIA

ICAM, Jember, Indonesia, June 25-26, 2012

This page intentionally left blank

#### CONTENTS

| Cover                       | i    |
|-----------------------------|------|
| Contents                    | iii  |
| Foreword                    | xi   |
| Keynote Speaker             | xiii |
| Rector of Jember University |      |

#### **Plenary Speakers**

| 1.    | Food Security and Its Implications to Developing Economies                                                                                                                                                                   |    |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|       | Mad Nasir Shamsudin, Faculty of Agriculture, Universiti Putra Malaysia.                                                                                                                                                      |    |  |  |  |
| 2.    | Green Marketing and Its Implications<br><b>Marthin Nanere</b> , La Trobe University, Australia, Faculty of Business,<br>Economics and Law, La Trobe Business School, Department of Marketing<br>and Tourism and Hospitality. | 3  |  |  |  |
| 3.    | Toward Indonesia's Agroindustries Competitiveness: The Case of<br>Bioethanol Development From Sugarcane Based Industries                                                                                                     | 15 |  |  |  |
|       | Gita Khaerunisa Indahsari and Rudi Wibowo. Faculty of Agriculture, Jember University.                                                                                                                                        |    |  |  |  |
| 4.    | Agricultural Policy Analysis Model: Enhancing Smallholders Development.                                                                                                                                                      | 33 |  |  |  |
|       | Zainal Abidin Mohamed, Faculty of Agriculture, Universiti Putra Malaysia.                                                                                                                                                    |    |  |  |  |
| 5.    | Agribusiness Market Development, Case Study : Rubber.                                                                                                                                                                        | 39 |  |  |  |
|       | <b>Moh.Taufik Hidayat</b> , PT. TRANS ARTHA MULIA: Exporter of Agricultural Produces, Jakarta.                                                                                                                               |    |  |  |  |
| Produ | uction, Technology, and Environment                                                                                                                                                                                          |    |  |  |  |
| 6.    | Sustainability Analysis of Smallholder Coffee Agro Industry                                                                                                                                                                  | 41 |  |  |  |
|       | Elida Novita , Rizal Syarief , Erliza Noor , Rubiyo                                                                                                                                                                          |    |  |  |  |
| 7.    | Natural Levee Utilization in Some Sub-Watershed of Bedadung's Watershed for Paddy Cultivation in Order to Support Food Security                                                                                              | 65 |  |  |  |
|       | S.A. Budiman                                                                                                                                                                                                                 |    |  |  |  |
| 8.    | Analysis of Solid Waste Management from Sugar Industry                                                                                                                                                                       | 73 |  |  |  |
|       | Khoiron                                                                                                                                                                                                                      |    |  |  |  |

| 9.  | Potency of Food Production Based on Integrated Farming to Support Food<br>Sufficiency                                                          | 81  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Rahayu Relawati                                                                                                                                |     |
| 10. | Custom Farming (Service Providing) System in Malaysian Paddy Farming                                                                           | 95  |
|     | Norsida Man                                                                                                                                    |     |
| 11. | Mapping and Critical Land Management as Efforts to Control Climate Change in Lamongan                                                          | 109 |
|     | Isa Ma'rufi and Eri Witcahyo                                                                                                                   |     |
| 12. | Nitrate Content as Export Constrain of Indonesian Vegetables to Europe                                                                         | 119 |
|     | Ketut Anom Wijaya                                                                                                                              |     |
| 13. | The Utilization of Cemara Udang (Casuarina Equisetifolia) for Agricultural Purposes in The Southern Coast of Yogyakarta                        | 129 |
|     | Atus Syahbudin , Dwi Tyaningsih Adriyanti , Anisa Handayani , Hu<br>Bai, Katsuya Osozawa , and Ikuo Ninomiya                                   |     |
| 14. | Precise N Fertilization as an Added Value for Farm Products                                                                                    | 145 |
|     | Sulis Dyah Candra and Ketut Anom Wijaya                                                                                                        |     |
| 15. | Implementation of Urban Farming Program in Surabaya-Indonesia for Decrease Poverty and Effort to Create Green Area                             | 153 |
|     | Endang Yektiningsih and Sigit Dwi Nugroho                                                                                                      |     |
| 16. | Screening and Partial Characterization of Bacteriocin from Lactid Acid Bacteria isolated from Fan Palm Sugar ( <i>Borassus flabellifer L</i> ) | 161 |
|     | Prestasia Budi Lestari and Agustin Krisna Wardani                                                                                              |     |
| 17. | Study toward The Deviance of Kerupuk Quality in Kerupuk Industry on Jember                                                                     | 167 |
|     | Elok Sayyidah Balya, Achmad Marzuki Moen'im and Setiadji                                                                                       |     |
| 18. | The Effect of The Addition of Yeast Isolates on The Colour During The Fermentation differentiation in Cocoa Beans                              | 181 |
|     | Shanti Akhiriani, Susijahadi, Djumarti, and Teguh Wahyudi                                                                                      |     |
| 19. | A Biochemical Aspect Study of The Making of MOCAL (Modified Cassava Flour) Using Spontaneous Fermentation                                      | 191 |
|     | Yudi Cristian Windartha                                                                                                                        |     |
|     |                                                                                                                                                |     |

20. The Making of Dye Powder of Duwet (Syzygium cuminii) Rind by Using 201 Spray Dryer Method and The Stability during The Keeping

#### Suci Nurdiastuti, Sukatiningsih and Siti Hartanti

21. The Application of Class CGM Model on The Peanut Plants (Arachis 215 Hypogaea L)

#### Afina, Indarto, and Idah Andriyani

22. The Impact of Media Type and Dose of Nitrogen Fertilizer to the Seedling 229 growth of Accacia Mangium Willd

#### Warsono, Sumiarjo Kiswondo, and Wahyu Giri Prasetyo

The Effect of Motivation of Paddy Straw Mushroom (Volvariella 239 volvaceae) Farmer in Increasing The Income of Paddy Straw Mushroom Industry in Jember

#### Nurul Fathiyah Fauzi

24. Cup Quality, Physical and Chemical Properties of Robusta Coffee Bean 251 Produced by Wet Process Methods

#### Yhulia Praptiningsih S.

| 25. | Anthocyanin | Stability | y of Robusta | Coffee Ch | nerries | During Storage | 259 |
|-----|-------------|-----------|--------------|-----------|---------|----------------|-----|
|     |             |           |              |           |         |                |     |

#### Sukatiningsih, Windrati, W.S, and Yudistira D

26. Detected Level of Recidues Tetracycline in Breast Meat, Drumstick and 269 Heart of Chicken with High Performance Liquid Chromatography (Hplc)

#### Winny Swastike

27. Forms and Effectiveness Adaptation Strategies on Climate Change: Lesson 275 Learned from Daerah Istimewa Jogyakarta

#### Sri Wahyuni and Saptana

28. Development of Traditional Sago Processor in Maluku: Opportunities and 289 Challenges for Supporting Food Diversification

## Inta P. N. Damanik , Siti Amanah , Siti Madanijah, and Prabowo Tjitropranoto

#### Marketing

29. Status of Marketing Activities on Selected Small and Medium Fruit 297 Processing Enterprises (SMFPES) Products : A Case of East Java, Indonesia

#### I. B. Suryaningrat

| 30. | Sugarcane Agribusiness Marketing Analysis on Dry Land People in Ngawi<br>District, East Java, Indonesia                                          | 307 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Agus Santosa                                                                                                                                     |     |
| 31. | Consumer Acceptability of Banana Blossom Sisic                                                                                                   | 321 |
|     | Isabel F. Salvador                                                                                                                               |     |
| 32. | Level of Awareness, Diferentiation, and Branch Value in Constructing<br>Farmer Perception Influencing The Decision of Corn Seed Hibrida Purchase | 337 |
|     | Riyanti Isaskar, Rini Dwiastuti, and Peterson Silalahi                                                                                           |     |
| 33. | Identification of Long Term Agroindustrial Relationship Pattern and<br>Analysis of Supply Chain Existence on Cassava Chips Agroindustry          | 351 |
|     | Rini Dwiastuti and Tatiek Koerniawati Andajani                                                                                                   |     |
| 34. | System of Rice Intensification (SRI) Product Value Added and Distribution<br>Channel Analysis                                                    | 361 |
|     | Tatiek Koerniawati Andajani and Rini Dwiastuti                                                                                                   |     |
| 35. | Consumer Preferences Toward Instant Food Products in Yogjakarata                                                                                 | 373 |
|     | Antik Suprihantini                                                                                                                               |     |
| 36. | Green Warehousing Initiatives towards Environmental Sustainability:<br>Adoption and Performance in the Malaysian Food-based Industry             | 385 |
|     | Nitty HirawatyKamarulzaman, Hilda Hussin, Amin Mahir Abdullah,<br>and Azmawani Abd Rahman                                                        |     |
| 37. | Consumer Behaviour Towards Herbal-Based Products in Malaysia                                                                                     | 395 |
|     | Juwaidah Sharifuddin , Nurliyana Ahmad Mazlan, and Golnaz Rezai                                                                                  |     |
| 38. | Analysis on Recent BULOG's Assignments for Both Producer and Consumer of Rice in Indonesia                                                       | 409 |
|     | Kuntoro Boga Andri                                                                                                                               |     |
| 39. | Analysis of Broccoli Supply Chain Management:Case Study in RODEO's Fresh Vegetables and Fruits Company                                           | 427 |
|     | Wisynu Ari Gutama and Nadia Gita Damayanti                                                                                                       |     |
| 40. | Market Analysis on Supply Chain Of Pisang Mas From Lumajang Regency, East Java                                                                   | 441 |
|     | Kuntoro Boga Andri                                                                                                                               |     |
| 41. | Siam Citrus Marketing Efficiency in Jember Regency                                                                                               | 453 |
|     | Julian Adam Ridjal                                                                                                                               |     |
| 42. | Rice Supply Chains in Indonesia: How They Work?                                                                                                  | 473 |
|     | Joni Murti Mulyo Aji                                                                                                                             |     |

43. Controlling Factors of Marketing Activities: A Case Study of Fruit 489 Processing Industries in East Java, Indonesia

#### Ida Bagus Suryaningrat

44. Supply Chain Management of Tomato Production at Madanapalle Region 497

#### **Durga Prasad Modekurti**

45. The Study of Agricultural Marketing in Art Performance in the Caseof 513 "Festival Pasar Kumandang"

#### Cahyani Tunggal Sari

46. Analysis of Coffee Consumer Behavior in Jember and Its Implications to 523 Development Strategy of Local Coffee Agro-Industry

#### Trias Primadani, Joni Murti Mulyo Aji and M. Sunarsih

#### **Economics and Policy Studies**

47. Feasibility and Sensitivity Study of Farming System to Increase 529 Accessibility of Small Coffee Farmers to The Financial Institutions

#### Ati Kusmiati

48. The Productivity of Women Labor on Cocoa Plantation in Banyuwangi 545 District

#### Evita Soliha Hani

49. Game Theory Analysis of Prospects of Formal and Informal Institution 553 Tobacco Industry in Gresik

## Gigih Pratomo, Adhitya Wardhono, Ciplis Gema Qo'riah, and Satrio Wicaksono

50. Internal and External Factors Affecting Farmers' Group Capability in 561 Adaptation on Climate Change

#### Wahyuning K. Sejati, Sri Wahyuni and Tri Pranadji

51. Logical Consistency and Tobacco Economic Development in Gresik 571 Regency

#### Ciplis Gema Qori'ah, Yulia Indrawati, and Gigih Pratomo

52. Food Vs Bio-Fuel and the Impact on Food Commodity Market in Indonesia 579

#### Triana Dewi Hapsari

53. Development of Downstream Agribusiness in the Context of Increasing 601 Value Added Products CPO

#### Diana Sulianti K. Tobing

| 54.    | Income Distribution and Food Security of Farm Household in Sleman District, Yogyakarta                                                                                               | 615 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | Jangkung Handoyo Mulyo and Sugiyarto                                                                                                                                                 |     |
| 55.    | Market Performance of Red Chili Through Spot Auction System in Yogyakarta Province                                                                                                   | 625 |
|        | Ebban Bagus Kuntadi and Jamhari                                                                                                                                                      |     |
| 56.    | Marine Fisheries Sector Economic : Potential and Coastal Area<br>Development Disparities North South East Java                                                                       | 639 |
|        | Totok Hendarto                                                                                                                                                                       |     |
| 57.    | Utilization Efficiency Yards Some Economic Aspects of The Revised                                                                                                                    | 659 |
|        | Irine Indrawati Syaifullah                                                                                                                                                           |     |
| 58.    | An Analysis on Financial Farming Effort Worthiness of Pisang Kepok<br>(Musa paradisiaca L. cv. Kepok) in Malinau Seberang Village, Sub –<br>District North Malinau, Malinau District | 673 |
|        | Hendris                                                                                                                                                                              |     |
| 59.    | Financial Analysis of Cattle Breeding Farm in Sleman District                                                                                                                        | 681 |
|        | Shanti Emawati and Endang Tri Rahayu                                                                                                                                                 |     |
| 60.    | Impact of Elimination of Automatic Detention on Cocoa Production<br>Indonesia                                                                                                        | 689 |
|        | Arum Putranti and Joni Murti Mulyo Aji                                                                                                                                               |     |
| 61.    | Significance of Informal Cross Border Trade Indonesia and Malaysia for<br>Agricultural Commodities Development In Nunukan Regency, East<br>Kalimantan                                | 697 |
|        | Kuntoro Boga Andri                                                                                                                                                                   |     |
| 62.    | Tax Policy on Exports of Crude Palm Oil Products in Indonesia: Challenges and Dilemmas                                                                                               | 707 |
|        | M. Abd. Nasir , Ciplis Gema Qo'riah , Yulia Indrawati , Adhitya Wardhono , and Satrio Wicaksono                                                                                      |     |
| Social | l and Institutional Studies                                                                                                                                                          |     |

63. Implementation of SRI (System of Rice Intensification) for Increasing 715 Paddy Production and Smallholder Self Sufficiency

#### Luh Putu Suciati and Bambang Juanda

64. Malaysian Paddy Farmers Awareness and Perception towards (System of 727 Rice Intensification (SRI): A Preliminary Study

#### Nolila Mohd. Nawi and Siti Samiha Zainal

65. Farmers' Entrepreneurship As New Approach to Increace Farm 739 Performance: Empicical Study on Chili and Rice Farming at Sleman Regency

#### Darmadji

66. An Integrated Institutional Development Based on Indigenous Knowledge 757 for Rural Poverty Allevation

Yekti T. Utami ; TioNugroho; AyuNurfauziyah; and Mochammad A. Junaidi

67. Analysis of Participants' Satisfaction under Contract Farming: A Case of 775 Peanut Farming in Lombok Island

#### I Gusti Lanang Parta Tanaya

 Enhance Industrial Competitiveness through Improved Ylang Essential Oil 789 Quality and Synergy Among Members of The Cluster

## Dyah Erni Widyastuti , Sukardi , Vina Salviana DS , Rahmad Dwi S., Tutik Sulistyowati

69. Rural Credit Market and Institutional Transformation: Evidence From 801 Jember Regency, East Java, Indonesia

#### Adhitya Wardhono

70. Tenurial Reform as Alternative Conflict Management and to Alleviate 811 Poverty of Coffee Smallholders Plantation in Rural Community

#### Mustapit

71. Factors of Smallholders Coffee Farmers' Implementation in Diversification 821 Postharvest in Jember Regency

#### Sudarko

72. The Role of Social Capital in Improving The Dynamics of Farmer Groups 829

#### Sri Subekti, Mudiyono and Sri Peni Wastutiningsih

73. The Behaviour of Woman Cigarette Consumen (Qualitative Study Of 839 Woman Active Smoker)

#### Dewi Rokhmah

74. Determinant of Exchange Rate and Institutional Rice Farmer 847

#### Sugeng Raharto and Yuli Hariyati

| 75. | Adopter Category and Preference of Information Source on The Adoption of<br>Herbal Feed Additive on Broiler Farm   |     |  |
|-----|--------------------------------------------------------------------------------------------------------------------|-----|--|
|     | Ayu Intan Sari                                                                                                     |     |  |
| 76. | Communication Strategy in Agribusiness Extension                                                                   | 865 |  |
|     | MC Ninik Sri Rejeki                                                                                                |     |  |
| 77. | The Role of Organization Involved in the Public Forest Resource<br>Management at Kemiri Village, Panti Subdistrict | 873 |  |

#### **Diah Puspaningrum**

#### FOREWORD

Since first introduced by Goldberg and Davis in 1957, agribusiness which is generally defined as the summation of all process involved in the manufacture and distribution of farm inputs; production operations on farm produce; including the storage, processing and distribution of farm commodities and the items made from them; has been growing as a body of knowledge which gradually evolves in both theory and practice.

As a part of the agribusiness system, marketing of food and agricultural products is recognized an important process dealing with handling and distributing the products from farms to forks. Various activities are involved in doing this, such as production planning, growing and harvesting, grading, packing, transport, storage, agro- and food processing, distribution, and sale. These activities are dynamic; they are competitive and involve continuous change and improvement.

Marketing activities cannot take place unless there are information exchanges. The success of marketing is also often heavily dependent upon the economies of scale and availability of suitable finance. Not surprisingly, small holders often face difficulties to get 'right price' in marketing their products as they do not have a proper access to bring their product to the 'right place' or their prospective customers.

Especially nowadays when the structure and governance of agri-food markets are changing rapidly, the smallholders are often left behind and marginalized. Trade liberalization policies in domestic and international markets are key drivers of these changes that lead to globalizing food chains. Stricter standards in term of product quality and market requirements such as supply reliability and scale of delivery bring about new challenges for agri-food producers, particularly for small farmers in developing countries. These daunting challenges have inspired us set up this event.

The International Conference on Agribusiness Marketing (ICAM) aims to explore and map various opportunities for agri-food industry especially in emerging markets within the internationally-integrated and globalized economic environment while identify challenges likely to be faced.

The papers in this proceedings were presented in the ICAM which was held in Jember University, Jember, East Java, Indonesia from 25 to 26 June 2012. It consists of papers from the keynote speakers and more than 70 contributed papers from the conference attendances. Finally, it is expected that all papers and outcomes produced in this conference can contribute, both theoretically and practically, to the future of agribusiness and marketing of agricultural products especially in the developing world.

Evita Soliha Hani The ICAM Chairperson

#### PRECISE-FERTILIZATION AS AN ADDED VALUE FOR FARM PRODUCTS BY INCREASING GLOBAL AWARENESS ON HEALTH AND ENVIRONMENTAL EFFECTS

#### Sulis Dyah Candra<sup>1</sup> and Ketut Anom Wijaya<sup>2</sup>

#### Abstract

Intensive nutrient managements for crop production are one of agriculture management strategies that are not yet widely adopted in most third world countries. Precise N Fertilization as a part of intensive nutrient managements is a great way to manage input efficiency; yet, the technology is feasible enough for farmers to apply, in order to increase the farm product quality while improve access in modern market. Nitrogen (N) required for plant growth and development in large numbers, but the plant is only capable of absorbing an average of less than 50% N provided through conventional fertilization. Greenhouse gases emissions are increasing mostly because of expanding use of N fertilizers, while the carcinogenic effect of N residue on farm products is a dangerous risk for human health. By increasing the awareness on health and environmental effects for farm products especially concerning precise N fertilization, consumer will get health benefit while producer will get an added value for their products. Thus, by applying better input efficiency farmers could simultaneously increase the price while meeting the higher consumer demands even with gradually stricter standards in term of farm product quality and market requirements.

Keywords: Precise N Fertilization; farm product added value

#### Introduction

Agricultural input efficiency is technically one of the most important farm products daunting challenges, despite problems on falling prices and meeting gradually higher consumer demands. Respectively, by applying better input efficiency eventually farmers could simultaneously increase the price while meeting the higher consumer demands even with gradually stricter standards in term of product quality and market requirements. Precise agricultural soil management is an important approach to avoid excessive nitrogen.

#### **Excessive Nitrogen Effect on Human Health**

The quality of vegetables is determined by several criteria which include physical integrity, color, and flavor. However, since the increased public awareness of health, consumer demands for better quality of vegetable product; some of these are the levels includes pesticide residues, heavy metals, and nitrates.

<sup>&</sup>lt;sup>1</sup> Faculty of Agriculture, Panca Marga University, Probolinggo, Indonesia, e-mail: sulisdyah@gmail.com

<sup>&</sup>lt;sup>2</sup> Faculty of Agriculture, Jember University, Indonesia, e-mail: anomwijaya143@yahoo.co.id

Nitrogen is considered the plant nutrient most widely deficient in the world's soils. Various agricultural practices have therefore been developed to increase its concentration in the soil. These practices include incorporating legume varieties in pasture and applying various nitrogen-rich fertilizers (urea, sulfate of ammonia, blood and bone) to crops; such practices sometimes cause plants grown in these soils to have nitrate levels above safe limits, resulting in livestock poisonings [1].

Agriculture is also the largest producer of both methane and nitrous oxide, which together make up about 22 percent of global emissions [2]. A robust finding is that reduced nitrogen inputs result in reduced nitrous oxide emissions. This effect is particularly strong for shifts from very high to medium nitrogen fertilization levels [3]. Nitrous oxide emissions are particularly difficult to quantify, as they are highly dependent on many factors such as the local small-scale weather conditions as well as on the particular fertilizer type used, soil and crop characteristics, management techniques and so on. Overall global agricultural emissions, for which are counting direct agricultural emissions plus input production and energy use, but land use change is disregarded, are composed of about 41 percent nitrous oxide, 49 percent methane and 10 percent carbon dioxide [4].

Understanding carcinogenesis is critical for development of rational approaches to cancer prevention. The hypothesis linking nitrate and increased risk of cancer rests on the proposition that nitrate is endogenously reduced to nitrite by bacteria and that carcinogenic N-nitroso compounds are formed. A large number of foods and biological material have been examined for their ability to generate mutagens or carcinogens under simulated gastric conditions in the presence of nitrite. It appears to be potential link between formation of the nitroso compound and epidemiological evidence of increased risk for specific cancers [5].

N-Nitroso compounds can induce cancer in experimental animals. Some representative compounds of this class induce cancer in at least 40 different animal species including higher primates. Tumors induced in experimental animals resemble their human counterparts with respect to both morphological and biochemical properties. Extensive experimental, and some epidemiological data suggest that humans are susceptible to carcinogenesis by N-nitroso compounds and that the presence of these compounds in some foods may be regarded as an aetological risk factor for certain human cancers, including cancer of the oesophagus, stomach and nasopharynx [6].

The carcinogenic effect of nitrosamines in tobacco products is one of the most extensive experiments. Several tobacco-specific nitrosamines have been considered as possible causative agents for human cancer. Nitrosamines may be implicated in the induction of certain human gastric cancers [7]. Diminishing human exposure to these carcinogens is one approach to prevention of cancer, although exposure to N-nitrosamine in tobacco products is still unacceptably high. Carcinogenic N-nitroso compounds are formed from the reaction of naturally-occurring amines and nitrites that may be added to foods or produced by bacterial reduction of nitrate. N-Nitroso compounds can be produced during processing, storage and preparation of foods and in the mammalian stomach. Factors that influence the rates of nitrosation reactions include pH, temperature, catalysts, and inhibitors [14].

#### **Excessive Nitrogen Effect on Human Environment**

Nitrogen essentially needed by plants as the building blocks of proteins, enzymes, chlorophylls, phyto-hormones and some other compounds. Plants generally obtain N from organic material that has undergone mineralization process in the form of nitrate and ammonium. Unabsorbed nitrogen by plants will turn into N<sub>2</sub>O and NH<sub>3</sub> gasses. N<sub>2</sub>O will evaporate and accumulate in Earth's atmosphere layers that could cause an increase Earth surface temperature (Global Warming). Most of N will undergo leaching and contaminating groundwater, while some will be carried away by the flow of surface water (run-off) and contaminate bodies of water such as rivers, reservoirs, etc. In general, N loss from crop fertilization is >89% through leaching, erosion, runoff, volatilization gas (NH<sub>3</sub>) and de-nitrification (N<sub>2</sub>, NO<sub>2</sub>, NO, N<sub>2</sub>O) [8].

Nitrous oxide as other form of Nitrogen is produced naturally in soils through the microbial processes of de-nitrification and nitrification. Natural emissions of N<sub>2</sub>O can be increased by a variety of agricultural practices and activities, including the use of synthetic and organic fertilizers. Natural emissions of N<sub>2</sub>O primarily result from bacterial breakdown of nitrogen in soils and in the earth's oceans. Human impacts can significantly enhance the natural processes that lead to N<sub>2</sub>O formation. For example, the nitrogen nutrient loading in water bodies due to fertilization and run-off to streams can enhance N<sub>2</sub>O emissions from these natural sources. Human-related ammonia emissions have also been shown to cause N<sub>2</sub>O emissions in the atmosphere through ammonia oxidation.

Sulis Dyah Candra et al.

The most important source of nitrous oxide emissions are fertilized soils. A certain part of the nitrogen applied to soils via organic and mineral nitrogen fertilizers or green manure and other forms of plant residues is emitted as nitrous oxide, which is generated through soil microbial processes. These nitrous oxide emissions account for more than 40 percent of the sector's overall emissions. Nitrous oxide emissions are particularly difficult to quantify, as they are highly dependent on many factors such as the local small-scale weather conditions as well as on the particular fertilizer type used, soil and crop characteristics, management techniques and so on. Agricultural lands occupy about 40-50% of the Earth's land surface. Agriculture releases to the atmosphere significant amounts of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O. CO<sub>2</sub> is released largely from microbial decay or burning of plant litter and soil organic matter. CH<sub>4</sub> is produced when organic materials decompose in oxygen-deprived conditions, notably from stored manures and from rice grown under flooded conditions. N<sub>2</sub>O is generated by the microbial transformation of nitrogen in soils and manures. Nitrous oxide emissions were largest in areas where a large portion of land is used for intensive agriculture.  $N_2O$  is often enhanced where available nitrogen (N) exceeds plant requirements, especially under wet conditions. In general, N<sub>2</sub>O emissions are highly correlated with crop areas and nitrogen inputs. Synthetic fertilizer makes up about half of total N additions, followed by fixation and manure. Globally, agricultural  $CH_4$  and  $N_2O$ emissions have increased by nearly 17% from 1990 to 2005. In South Asia, greenhouse gases emissions are increasing mostly because of expanding use of N fertilizers and manure [9].

The Nitrogen nutrient loading in water bodies due to fertilization and run-off to streams can enhance  $N_2O$  emissions from these natural sources. Human-related ammonia emissions have also been shown to cause  $N_2O$  emissions as an important Green House Gasses (GHG) contributor in the atmosphere, through ammonia oxidation [10].

Intensive nutrient managements for crop production are one of agriculture management strategies that are not yet widely adopted in most third world countries. Maize cultivation in Indonesia for instance, is still highly inefficient in N fertilizer application with the loss of 50-58% N, while in the USA the loss is about 14-41%. Even in lowland rice cultivation in Indonesia occurred at 77-89% loss of N [8].

#### Awareness and Added Value

By increasing the awareness on health and environmental effects for farm products especially concerning precise N fertilization, consumer will get health benefit while producer will get an added value for their farm products. Thus, by applying better input efficiency farmers could simultaneously increase the price while meeting the higher consumer demands even with gradually stricter standards in term of farm product quality and market requirements.

What the agriculturally-based-third-world-country need is value added agriculture, which involves taking the product to the next level before selling. With adding an extra value to the farm products - an extra level of sophistication of world healthier and environmental awareness trend – could overcome classic problems, such as: the farm product which is usually sold at an average price (minimum amount of profit) or even below cost production (that in the long-term could threat farmers to cover operating agricultural practices, while farmer as small scale enterprise is already more vulnerable to losses yields).

The reduced use of less N fertilizer simultaneously decrease costs and pollution, which is a consequence of methods of synthesis of uptake by crops while overcoming the inefficient N fertilizer application; achievement of these goals is urgently required [11].

#### Conclusion

Precise fertilization, especially for nitrogen, is in alignment with a long term modern agricultural objective of improving crop N-use and yield with fewer inputs and less pollution; which requires better awareness, understanding and application of in-farm and off-farm efficiency, especially for farmers to increase profit through better farm product quality as an added value.

In scarcity, N will be the limiting plant growth factor, but in adverse case where N supply is abundance. The available nitrogen usually exceeds plant requirements while enhancing  $N_2O$  [9] or, adding nitrogen, however, often stimulates  $N_2O$  emissions as Green House Gasses [12]. A large part of global agriculture uses N-fertilizer very inefficiently (even in developed economies) often because other environmental conditions are limiting so improvement in technology for N-application, as well as application of current best practice, could reduce losses and increase production [8]. In modern agriculture, the

production of large yields of high quality products with the minimal input of resources, particularly N fertilizers, is the main aim [13].

Precise N Fertilization as a part of intensive nutrient managements is a great way to manage input efficiency; yet, although the technology (such as N-mineral fertilizer Method) is feasible enough for farmers to apply, basic practical field application manual is still needed to be widely spread especially among farmers. By integrating the government role as well as industrial and university involvement, it would be just the matter of time for small scale farmer in order to increase the farm product quality while improve access in modern market.

#### References

- [1] S. Robson, Nitrate and Nitrite Poisoning in Livestock. Primefact 415. State of New South Wales through NSW Department of Primary Industries. 2007. ISSN 1832-6668.
- [2] K.A. Baumert, T. Herzog, J. Pershing, Navigating the Numbers. Greenhouse Gas Data and International Climate Policy. Washington D.C., World Resources Institute. 2005. http://pdf.wri.org/navigating\_numbers.pdf [21.05.2012]
- [3] A. Bouwman, L. Boumans, N. Batjes, Emissions of N<sub>2</sub>O and NO from fertilized soils: summary of available measurement data. 2002. Global Biogeochemical Cycles 16(4)
- [4] J. Bellarby, B. Foereid, A. Hastings, P. Smith, Cool Farming: Climate impacts of agriculture and mitigation potential. Greenpeace International, Amsterdam, the Netherlands. 2008. http://www.greenpeace.org/international/Global/international/planet-2/report/2008/1/cool-farming-full-report.pdf [15.05.2012]
- [5] SR Tannenbaum SR, Diet and Exposure to N-nitroso compounds. Princess Takamatsu Symp. 1985; 16:67-75.
- [6] A.R. Tricker, R. Preussmann R, Carcinogenic N-nitrosamines in the diet: occurance, formation, mechanisms and carcinogenic potential. Mutat Res. 1991 Mar-Apr; 259(3-4):277-89.
- [7] J.K. Lin, Nitrosamines as Potential Environmental Carcinogens in Man. Taipei, China. Clin Biochem. 1990 Feb; 23 (1): 67-71.
- [8] PE. Bacon (Ed.), Nitrogen Fertilization, in the Environment. 1995. New York: Marcell Dekker Inc.
- [9] P. Smith, D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, C. Rice, B. Scholes, O. Sirotenko, Agriculture. In: Metz, B., Davidson, O.R., Bosch, P.R., Dav, R., Meyer, L.A. (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change. 2007. Cambridge University Press, Cambridge, United Kingdom and New York, USA

- [10] EPA, US Emissions Inventory 2010: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008. 2010. http://epa.gov/climatechange/emissions/usinventoryreport.html [15.05.2012]
- [11] MW. Ter Steege, I Stulen, B. Mary, Nitrogen in the Environment in: [Lea PJ, Morot-Gaudry J-F, eds.] Plant Nitrogen. 2001. Berlin. pp 379-397.
- [12] RT. Conant, K. Paustian, S.J. Del Grosso, and W.J. Parton, Nitrogen pools and fluxes in grassland soils sequestering carbon. *Nutrient Cycling in Agroecosystems*, 2005: b 71, pp. 239-248
- [13] DW. Lawlor, Carbon and Nitrogen Assimilation in Relation to Yield: Mechanism are the key understanding production system. 2001. UK. [http://jxb.oxfordjornals.org/content/53/370/773.full]

#### **Article in A Conference Proceedings:**

[14] Hecht SS, Approaches to cancer prevention based on understanding of N-nitrosamine carcinogenesis. Proc Sos Exp Biol Med. 1997 Nov; 216(2): 181-91.

## SUPORTED BY



**mandırı** syarıah

Anggota IKAPI No 127/JTI/2011

Jember University Press JI Kalimantan 37 Jember 68121 Telp 0331-330224, psw. 319, 320 E-mail : unej\_press@ymail.com

