BAB III

METODE PENELITIAN

3.1 Jenis dan Pendekatan Penelitian

3.1.1 Jenis Penelitian

Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian kuantitatif dengan penelitian besifat asosiatif kausal. Menurut Sugiono (2019: 7) "Penelitian kuantitatif merupakan penelitian dengan memperoleh data yang berbentuk angka atau data kualitatif yang diangkakan". Dan penelitian asosiatif kausal Menurut Sugiono (2018: 63) merupakan penelitian yang bertujuan untuk pengaruh ataupun hubungan antara dua variabel atau lebih. Sedangkan karakteristik penelitian ini bersifat replikasi, sehingga hasil uji hipotesis didukung oleh penelitian terdahulu yang di uji kembali dengan kondisi lain namun berdasarkan karakteristik yang kurang lebih sama.

3.2 Definisi Oprasional Variabel

Menurut Sugiono (2019: 38) "variabel penelitian adalah segala sesuatu yang berbentuk apa saja yang ditetapkan oleh peneliti untuk dipelajari sehingga diperoleh informasi tentang hal tersebut, kemudian ditarik kesimpulannya". Dalam penelitian ini terdapat dua variabel yaitu variabel bebas (*independent variable*) dan variabel terikat (*dependent variable*) sebagai berikut:

1) Variabel Independent

Variabel bebas (*independent variable*) merupakan variable stimulus atau variabel yang mempengaruhi variabel lain. Variabel bebas merupakan variabel variabel yang diukur atau dipilih oleh peneliti untuk menentukan hubungannya dengan suatu gejala yang di observasi. Dalam penelitian ini variabel independent adalah *Current Ratio* (X_1) , *Assets Trun Over* (X_2) , *Return On Asset* (X_3) dan *Return On Equity* (X_4) .

2) Variabel Dependent

Variabel terikat (*dependent variable*) merupakan variabel yang dipengaruhi atau yang menjadi akibat, karena adanya variabel bebas. Dalam penelitian ini yang menjadi variabel dependen adalah harga saham (Y).

Definisi Oprasional Variabel menjelaskan secara singkat variablevariable yang diteliti. Definisi oprasional variable yang ada dalam penelitian ini adalah sebagai berikut:

Tabel 3.1

Definisi Oprasional Variable

No.	Variab	Desain dan	Indikator	Skala
	le	Definisi		
		Oprasional		
1	Current	Rasio likuiditas	Current Ratio atau rasio	Rasio
	Ratio	merupakan rasio	lancar merupakan rasio	
	(X_1)	yang digunakan	untuk mengukur	
		untuk mengukur	kemampuan perusahaan	
		seberapa	dalam membayar kewajiban	
		likuidnya suatu	jangka pendek atau utang	
		perusahaan	yang segera jatuh tempo.	
		dengan	Rumus:	

			T	
		membandingkan	CR = Aktiva Lancar	
		komponen yang	Utang Lancar	
		ada.		
2	Assets	Rasio aktivitas	Assets Turn Over	Rasio
	Turn	(activity ratio)	merupakan rasio yang	
	Over	merupakan rasio	digunakan untuk mengukur	
	(X_2)	yang digunakan	perputaran semua aktiva	
		untuk mengukur	yang dimiliki perusahaan	
		efektivitas	dan mengukur beberapa	
		perusahaan dalam	jumlah yang diperoleh dari	
		menggunakan	tiap rupiah aktiva.	
		aktiva yang	Rumus:	
		dimilikinya.	TATO = <u>Penjualan Bersih</u>	
			Total Aktiva	
3	Return	Rasio	Return On Assets (ROA) ini	Rasio
	On	Profitabilitas	digunakan untuk mengukur	
	Assets	merupakan rasio	seberapa besar laba jumlah	
	(X_3)	untuk menilai	laba bersih yang dapat	
		kemampuan	dihasilkan dari seluruh aset	
		perusahaan dalam	yang dimiliki oleh	
		mencari	perusahaan.	
		keuntungan	Rumus:	
			ROA = NIAT	
			X 100%	
			Asset	
4	Return	Rasio	Return On Equity (ROE)	Rasio
	On	Profitabilitas	rasio ini digunakan untuk	
	Equity	merupakan rasio	mengukur seberapa besar	
	(X_4)	untuk menilai	jumlah laba bersih yang akan	
		kemampuan	dihasilkan dari setiap rupiah	
		perusahaan dalam	dana yang tertanam dalam	
		mencari	total ekuitas.	
		keuntungan	Rumus :	
			ROE = NIAT	
			X 100%	
			Equity	
5	Harga	Harga saham	Closing Price	Nomin
	Saham	adalah harga		al
	(Y)	suatu saham pada		
		pasar yang		
		sedang		
		berlangsung		

Sumber: Buku Analisis Laporan Keuangan, Kasmir (2015)

3.3 Populasi dan Sampel

3.3.1 Populasi Penelitian

Menurut Sugiono (2019: 80) "populasi adalah wilayah generealisasi yang terdiri atas obyek/subjek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya".

Populasi data penelitian ini adalah perusahaan pada *Jakarta Islamic Index* periode 2017-2019 sebanyak 30 perusahaan. Index saham *Jakarta Islamic Index* selalu diperbaharui setiap 6 bulan sekali.

3.3.2 Sampel Penelitian

Menurut Sugiono (2019: 81) "sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut". Pengambilan sampel harus sesuai dengan kualitas dan karakteristik suatu populasi. Pengambilan sampel yang tidak sesuai dengan kualitas dan karakteristik populasi akan menyebabkan suatu penelitian akan menajadi biasa dan tidak dapat dipercaya serta kesimpulannya pun bisa keliru.

Metode yang digunakakn dalam pengambilan sampel adalah metode sampel purposif (purposive sampling). Menurut Sugiono (2019: 85) "sampling purposife merupakan teknik penentuan sampel dengan pertimbangan tertentu". Penggunaan metode ini senantiasa berdasarkan

pada pengetahuan tentang ciri-ciri tertentu yang telah didapa dari populasi sebelumnya.

Adapun yang menjadi kriteria pengambilan sampel dalam penelitian ini adalah sebagai berikut :

- Perusahaan yang mempunyai data keuangan lengkap dan dapat diandalkan kebenarannya di Bursa Efek Indonesia periode 2017-2019.
- Perusahaan-perusahaan yang mempunyai data rasio lengkap dan tidak bernilai negatif di Bursa Efek Indonesia periode 2017-2019.
- Perusahaan-perusahaan yang konsisten terdaftar dalam Jakarta Islamic Index periode 2017-2019.

Tabel 3.2 Data Sampel Perusahaan Sesuai Kriteria Sampel

No.	Kode Perusahaan		Data Keuangan Lengkap			Data Rasio Lengkap dan Tidak Bernilai Negativ			en Terda JII	Keterangan	
		2017	2018	2019	2017	2018	2019	2017	2018	2019	
1	ADRO	V	V	V	V	V	V	V	V	V	SAMPEL
2	AKRA	V	V	V	V	V	V	V	V	V	SAMPEL
3	ANTM	V	V	V	V	V	V	V	V	V	SAMPEL
4	BPRT	V	V	V	V	V	V	V	V	V	SAMPEL
5	BTPS	V	V	V	-	V	V	V	V	V	NON SAMPEL
6	CPIN	V	V	V	V	V	V	V	V	V	SAMPEL
7	EXCL	V	V	V	V	-	V	V	V	V	NON SAMPEL
8	ICBP	V	V	V	V	V	V	V	V	V	SAMPEL
9	INCO	V	V	V	V	-	V	V	V	V	NON SAMPEL
10	INDF	V	V	V	V	V	V	V	V	V	SAMPEL
11	INKP	V	V	V	V	V	V	-	-	-	NON SAMPEL
12	INTP	V	V	V	V	V	V	V	V	V	SAMPEL
13	JPFA	V	V	V	V	V	V	V	V	V	SAMPEL
14	KAEF	V	V	V	-	-	-	-	-	-	NON SAMPEL

1		i i		ı	I	ı	ı	1	1	l	
15	KLBF	V	V	V	V	V	V	V	V	V	SAMPEL
	MDKA	V	V	V	-	-	-	V	V	V	NON
16		V	V								SAMPEL
	MIKA	V	V	V			_				NON
17		V	V	V	_		_	_		_	SAMPEL
18	MNCN	V	V	V	V	V	V	V	V	V	SAMPEL
19	PGAS	V	V	V	V	V	V	٧	V	V	SAMPEL
20	PTBA	V	V	V	V	V	V	V	V	V	SAMPEL
	PTPP	.,		.,	.,	.,	.,				NON
21		V	V	V	V	V	V	-	-	-	SAMPEL
	PWON	V	V	V				V	M	W	NON
22		V	V	V		-	-	V	V	V	SAMPEL
23	SCMA	V	V	V	V	V	V	V	V	V	SAMPEL
24	SMGR	V	V	V	V	V	V	V	V	V	SAMPEL
	TKIM	.,	V	.,	.,	.,	V				NON
25		V	V	V	V	V	V	-	-	-	SAMPEL
26	TLKM	V	V	V	V	V	V	V	٧	V	SAMPEL
27	TPIA	V	V	V	V	V	V	V	V	V	SAMPEL
28	UNTR	V	V	V	V	V	V	V	V	V	SAMPEL
29	UNVR	V	V	V	V	V	V	V	V	V	SAMPEL
	WIKA	V	V	V			_	V	V	V	NON
30		V	V	v	_		_	V	V	V	SAMPEL

Sumber: IDX BEI (2019) data diolah peneliti 2022

Sampel perusahaan yang sesuai kriteria diatas berjumlah 19 perusahaan yang ditunjukkan pada tabel 3.2 sebagai berikut :

Tabel 3.6

Data Sample Penelitian

No	Nama Emiten	Kode Perusahaan
1	Adaro Energy Tbk.	ADRO
2	AKR Corporindo Tbk.	AKRA
3	Aneka Tambang Tbk.	ANTM
4	Barito Pacific Tbk.	BPRT
5	Charoen Popkphand Indonesia Tbk.	CPIN
6	Indofood CBP Sukses Makmur Tbk.	ICBP
7	Indofood Sukses Makmur Tbk.	INDF
8	Indocement Tunggal Prakasa Tbk.	INTP
9	Japfa Comfeed Indonesia Tbk.	JPFA
10	Kalbe Farma Tbk.	KLBF
11	Media Nusantara Citra Tbk.	MNCN
12	Perusahaan Gas Negara Tbk.	PGAS
13	Bukti Asam Tbk.	PTBA
14	Surya Citra Media Tbk.	SCMA
15	Semen Indonesia (Persero) Tbk.	SMGR
16	Telekomunikasi Indonesia (Persero) Tbk.	TLKM
17	Chandra Asri Petrochemical Tbk.	TPIA
18	United Tractors Tbk.	UNTR
19	Unilever Indonesia Tbk.	UNVR

Sumber : Data sekunder diolah peneliti 2022

3.4 Sumber Data dan Metode Pengumpulan Data

3.4.1 Sumber Data

Data Sekunder

Menurut Sugiyono (2019: 137) "Data Sekunder merupakan sumber yang tidak langsung memberikan data kepada pengumpul data, misalnya lewat orang lain atau lewat dokumen". Jadi data sekunder dapat diartikan sebagai informasi yang diperoleh dari sumber lain yang mungkin tidak berhubungan langsung dengan peristiwa tersebut.

Data sekunder yang yang diperoleh langsung dari website Bursa Efek Indonesia (www.idx.co.id) yaitu dalam bentuk jadi seperti, catatan atau laporan historis yang telah dipublikasikan yang berupa laporan tahunan perusahaan indeks *Jakarta Islamic* Indek yang dipublikasikan tahun 2017-2019.

3.4.2 Metode Pengumpulan Data

Teknik pengumpulan data yang digunakan peneliti dalam penelitian ini antara lain sebagi berikut :

1) Metode Dokumentasi

Motede Dokumentasi adalah metode pengumpulan data dengan cara melihat atau mencatat data-data yang berkenan dengan data permasalahan yang diperoleh. Data yang digunakan adalah laporan tahunan yang sudah diaudit.

2) Studi Kepustakaan

Studi kepustakaan adalah pengumpulan data dengan cara mempelajari dan memahami buku-buku yang mempunyai hubungan dengan perhitungan *Current Ratio* (CR), *Assets Trun Over* (TATO), *Return On Asset* (ROA) dan *Return On Equity* (ROE) serta Harga Saham seperti artikel, jurnaL penelitian, skripsi, media massa dan hasil penelitian yang diperoleh dari berbagai sumber.

3.5 Metode Analisis Data

Menurut Sugiyono (2017: 244) Analisis data adalah "proses mencari dan menyusun data yang diperoleh dari hasil wawancara, catatan lapangan, dan bahan-bahan lain secara sistematis sehingga mudah dipahami dan temuannya dapat diinformasikan kepada orang lain".

3.6 Uji Asumsi Klasik

1) Uji Normalitas

Menurut Imam (2018: 161) "Uji normalitas bertujuan untuk menguji apakah dalam model regresi, variabel pengganggu atau residual memiliki distribusi normal". Model regresi yang baik adalah memiliki distribusi data normal atau mendekati normal. Uji normalitas data dapat mengetahui apakah distribusi sebuah data mengikuti atau mendekati distribusi normal. Distribusi data yang baik adalah data yang mempunyai pola seperti distribusi normal, yakni distribusi data tersebut tidak mempunyai juling ke kiri atau ke kanan dan keruncingan ke kiri atau ke kanan.

Untuk menguji apakah data berdistribusi normal atau tidak normal dapat dilakukan dengan cara melihat uji statistik non-parametik Kolmogorov – Smirnov (K-S). Data yang berdistribusi normal ditunjukkan dengan nilai signifikan di atas 0,05.

2) Uji Heteroskedastisitas

Menurut Imam (2018: 137) "Heteroskedastisitas muncul apabila kesalahan atau residual dari model yang diamati tidak memiliki varians

yang konstan dari satu observasi ke observasi lainnya". Artinya setiap observasi mempunyai reliabilitas yang berbeda akibat perubahan dalam kondisi yang melatar belakangi tidak terangkum dalam spesifikasi model. Gejala heteroskedastisitas lebih sering dijumpai dalam data silang tempat daripada runtut waktu, maupun juga sering muncul dalam analisis yang menggunakan data rata-rata. Pada penelitian ini, peneliti menggunakan uji glejser. Uji glejser sebagai alat ukur untuk mengetahui ada atau tidaknya heterokedastisitas yaitu dengan meregres variabel independen terhadap absolute residual.

3) Uji Multikolinearitas

Uji multikolinieritas bertujuan untuk menguji apakah regresi diketemukan adanya korelasi antar variabel bebas (independen). Model regresi yang baik tentu tidak terjadi korelasi diantara variabel bebas. Jika variabel bebas saling berkorelasi, maka variabel tersebut tidak membentuk variabel orthogonal. Variabel orthogonal adalah variabel bebas yang nilai korelasi antar sesama variabel bebas sama dengan nol. Untuk mendeteksi ada atau tidaknya multikolinieritas didalam model regresi adalah dapat dilihat dari nilai matrik korelasi variabel-variabel bebas, dan nilai tolerance dan lawannya, dan *variance inflation factor* (VIF).

Kedua ukuran ini menunjukkan setiap variabel independen manakah yang dijelaskan oleh variabel bebas lainnya. Jadi, nilai tolerance yang rendah sama dengan nilai VIF yang tinggi. Nilai yang umum dipakai adalah nilai tolerance 0,10 atau sama dengan nilai VIF diatas 10.

4) Uji Autokorelasi

Menurut Imam (2018: 111) "Uji autokorelasi bertujuan menguji apakah dalam suatu model regresi linear ada korelasi antara kesalah pengganggu pada periode t-1 (sebelumnya)". Jika terjadi korelasi, maka dinamakan ada problem autokorelasi. Autokorelasi muncul karena observasi yang berurutan sepanjang waktu berkaitan satu sama lain. Masalah ini timbul karena residual tidak bebas dari satu observasi ke observasi lainnya. Dengan kata lain, masalah ini seringkali ditemukan apabila kita menggunakan data runtut waktu. Hal ini disebabkan karena gangguan pada individu/kelompok yang sama pada periode berikutnya, pada data kerat silang (cross section), masalah autokorelasi relatif jarang terjadi karena gangguan pada observasi yang berbeda berasal dari individu/kelompok yang berbeda.

Terdapat beberapa cara yang digunakan untuk mendeteksi ada tidaknya autokorelasi, pada penelitian ini cara yang digunakan adalah uji run test. Run test digunakan untuk menguji hipotesis deskriptif (satu sampel), bila skala pengukurannya ordinal maka run test dapat digunakan untuk mengukur urutan suatu kejadian. Pengujian dilakukan dengan cara mengukur kerandoman populasi yang didasarkan atas data hasil pengamatan melalui data sampel.

3.7 Uji Hipotesis

1) Analisis Regresi Linier Berganda

Regresi linier berganda pada dasarnya merupakan perluasan dari regresi linier sederhana, yaitu menambahkan jumlah variabel bebas yang sebelumnya hanya satu menjadi dua atau lebih variabel bebas. Contohnya adalah pengaruh *Current Ratio* (CR), *Assets Trun Over* (TATO), *Return On Asset* (ROA) dan *Return On Equity* (ROE) terhadap harga saham. Dalam hal ini ada empat variabel bebas dan satu variabel terikat.

Dengan demikian, regresi linier berganda dinyatakan dalam persamaan matematika sebagai berikut :

Rumus : $Y = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 + e$

Keterangan:

Y = Harga Saham

a = Konstanta

b₁ = Koefisien regresi variabel *Current Ratio* (CR)

b₂ = Koefisien regresi variabel *Assets Trun Over* (TATO)

b₃ = Koefisien regresi variabel *Return On Asset* (ROA)

b4 = Koefisien regresi variabel *Return On Equity* (ROE)

 $X_1 = Current Ratio (CR)$

 $X_2 = Assets Trun Over (TATO)$

 $X_3 = Return \ On \ Asset \ (ROA)$

 $X_4 = Return \ On \ Equity \ (ROE)$

e = Variabel pengganggu

2) Uji Hipotesis Parsial (Uji t)

Uji signifikan terhadap masing-masing koefosien regresi diperlukan untuk mengetahui signifiikan tidaknya pengaruh dari masing-masing variabel bebas (X) terhadap variabel terikat (Y). Berkaitan dengan hal ini, uji signifikan secara parsial digunakan untuk menguji hipotesis penelitian. Nilai yang digunakan untuk melakukan pengujian adalah nilai t_{hitung} yang diperoleh dari rumus sebagai berikut:

Rumus:

$$t_{tabel} = t(\alpha/2, n-k-1)$$

Serta dasar untuk pengambil keputusan dalam uji parsial ini adalah sebagai berikut :

- a. Jika nilai sig. < 0.05 atau $t_{\text{hitung}} > t_{\text{tabel}}$ maka variabel X terhadap Y berpengaruh.
- b. Jika nilai sig. > 0.05 atau $t_{\text{hitung}} < t_{\text{tabel}}$ maka variabel X terhadap Y tidak berpengaruh.

3) Uji Hipotesis Simultan (Uji F)

Uji statistik F pada dasarnya menunjukkan apakah semua variabel bebas yang dimasukkan dalam model mempunyai pengaruh secara bersama-sama terhadap variabel terikat. Artinya, semua variabel independen secara simultan merupakan penjelasan yang signifikan terhadap variabel dependen.

Uji keseluruhan koefisien regresi secara bersama-sama (Uji F) dilakukan dengan langkah-langkah sebagai berikut :

a) Menghitung nilai F dengan rumus sebagai berikut :

 $F_{tabel} = k$, n-k

- b) Membandingkan nilai F_{hitung} dengan F_{tabel} yang tersedia pada α tertentu.
- c) Mengambil keputusan apakah model regresi linier berganda dapat digunakan atau tidak sebagai model analisis. Dengan menggunakan kriteria berikut ini, jika H₀ ditolak maka model dapat digunakan kriteria pengembalian keputusan sebagai berikut :
 - Jika nilai sig. < 0.05 atau $F_{\text{hitung}} > F_{\text{tabel}}$ maka variabel X secara simultan terhadap Y berpengaruh.
 - Jika nilai sig. > 0.05 atau $F_{\text{hitung}} < F_{\text{tabel}}$ maka variabel X secara simultan terhadap Y tidak berpengaruh.

4) Koefisien Derterminan (R²)

Menurut Imam dalam Ferdinand (2016) Koefisien determinasi digunakan untuk menggambarkan kemampuan model menjelaskan variasi yang terjadi dalam variabel dependen. Koefisien determinasi ditunjukkan oleh angka R-Square dalam model summary yang dihasilkan oleh program.

Nilai R² adalah antara nol dan satu. Model yang baik menginginkan R² yang tinggi. Jika nilai R² mendekati satu ini berarti hampir seluruh variasi variabel dependen dapat dijelaskan oleh variabel penjelas yang dimasukkan ke dalam model. Kelemahan penggunaan koefisien determinasi adalah terjadinya bias terhadap jumlah variabel independen

yang digunakan, karena setiap tambahan variabel independen akan meningkatkan R^2 walaupun variabel itu tidak signifikan. Dalam praktiknya, nilai koefisien determinasi yang digunakan untuk analisis adalah R^2 yang telah disesuaikan (R^2 _{adjusted}).

Menurut Imam dalam Ferdinand (2016) Adjusted R^2 dapat naik atau turun apabila sebuah variabel independen ditambahkan dalam model dari adjusted R^2 ini adalah :

- a. Adjusted R^2 dapat bernilai negatif kendati R^2 selalu positif. Bila adjusted R^2 bernilai negatif, maka nilainya dianggap nol.
- b. Secara umum bila tambahan variabel independen merupakan predictor yang baik, maka akan menyebabkan nilai varians naik dan pada gilirannya adjusted R² meningkat. Sebaliknya, bila tambahaan variabel baru tidak meningkatkan varians, maka adjusted R² akan menurun. Artinya tambahan variabel baru tersebut bukan merupakan prediktor yang baik bagi variabel dependen

5) Uji Dominan

Menurut Ghozali (2018: 102) "Uji dominan dilakukan untuk mengetahui variabel independen yang paling berpengaruh dominan di dalam regresi linier". Uji dominan dapat diartikan sebagai alat uji untuk mengetahui pengaruh yang paling dominan dari variabel bebas (independen) terhadap variabel terikat (dependen) yang dilihat dari nilai koefisisen regresi (b) yang distandarisasi dengan nilai beta.

Menurut Gunawan (2017: 105) "Kriteria uji dominan yaitu jika nilai koefisisen regresi variabel memiliki nilai besar, maka variabel tersebut memiliki pengaruh dominan. Semakin beasr nilai beta, maka semakin besar pengaruhnya terhadap variabel dependen". Dalam penelitian ini, cara untuk menentukan variabel bebas yang berkontribusi terbesar atau berpengaruh dominan terhadap variabel terikat adalah dengan melihat standarized coefficients beta yang paling tinggi pada tingkat kepercayaan 95% atau taraf signifikan 5%.