Jurnal 3 by Mohammed Imran

Submission date: 19-Mar-2024 07:22AM (UTC+0700)

Submission ID: 2284248856 **File name:** Jurnal_3.pdf (732.11K)

Word count: 2173
Character count: 11801

Prototype Alat Untuk Mengukur pH, Suhu, Dan Kadar Kekeruhan Air Tambak Untuk Budidaya Udang Vaname Litopenaeus Vannamei Menggunakan Arduino Uno

4. Andrik Setiyawan¹, Nuzul Hikmah² dan Imam Marzuki³

1.23Program Studi Teknik Elektro, Fakultas TEKNIK, Universitas Panca Marga Probolinggo Jl. Yos Sudarso 107 Pabean Dringu Probolinggo 67271

E-mail: andrik_setiyawan@yahoo.com1, n.hikmah1807@upm.ac.id2, imam@upm.ac.id3

Abstract— In cultivation vaname shrimp, optimal growth and development conditions water pH in the range 7.5-8.5, temperature of 28-30°C and water turbidity is 25-400 NTU. Unstable temperature, pH, and turbidity conditions can cause the growth and development vaname shrimp. So there need for periodic monitoring find out the condition pond water. Here researcher uses DS18B20 temperature sensor, pH prob Kit to find out pH value, and dfrobot urbidity sensor. Output the sensor displayed on 20x4 LCD screen. From this research, with 4 experiments, it is known that average value that LCD screen is a pH value of 7.45, temperature of 27.9°C. Meanwhile, the value of water turbidity of 38,065 NTU. Research is used comparison using digital pH meter and alcohol thermometer. The result average pH value 7.43, temperature is 28.543°C. So from these data can be concluded the tool has worked perfectly, but for the turbidity sensor its accuracy is still doubtful due to the absence comparative data

Abstrak—Dalam budidaya udang vaname kondisi tumbuh dan kembang akan optimal jika pH berkisar 7,5-8,5 suhu 28-30 °C dan kadar kekeruhan air 25-400 NTU. Kondisi suhu, pH, dan kadar kekeruhan yang tidak stabil dapat menyebabkan tumbuh dan kembang udang vaname. Sehingga perlu adanya alat untuk mengukur secara berkala untuk mengetahui kondisi air tambak tersebut. Di sini peneliti meggunakan sensor suhu DS18B20, pH prob Kit untuk mengetahui nilai pH, dan sensor kekeruhannya dfrobot. Lalu output sensor tersebut muncul pada LCD 20x4. Dari penelitian tersebut dengan 4 kali percobaan diketahui nilai rata - rata yang muncul pada layar LCD yaitu nilai pH 7,45 dengan suhu 27,9 °C. Untuk nilai kekeruhannya rata-rata 38,065 NTU. Untuk meyakinkannya, peneliti menggunakan pembanding dengan menggunakan pH meter digital dan termometer alhokol. Diketahui nilai rata-rata dari pH dan suhu pembanding hampir sama dengan menggunakan alat yang peneliti buat yaitu nilai pH 7,43 suhu 28,5 °C dan untuk nilai kekeruhannya peneliti tidak medapatkan uji pembanding yang benar-benar presisi.

Kata Kunci— sensor suhu DS18B20, pH prob Kit, sensor kekeruhan dfrobot, dll.

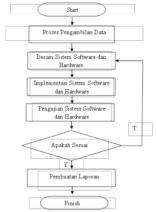
I. PENDAHULUAN

Udang adalah salah satu komoditas budidaya yang banyak dibudidayakan. Termasuk salah satunya adalah udang vannamei. Udang jenis ini mulai banyak yang membudidayakan di Indonesia sekitar tahun 2000an sebagai pengganti dari jenis udang windu waktu itu diperkenankan.

Salah satu faktor yang krusial dalam pembudidayaan udang vaname adalah adalah kualitas air di tambak yang dikelola. Karena jika tidak di lihat kualitas air tambaknya. Mengakibatkan kerugian bagi yang membudidayakannya. parameternya bisa dilihat nilai dari nilai pH, suhu, dan kadar kekeruhan air tambak tersebut. Dari masalah tersebut penulis lalu membuat prototype alat untuk melihat kualitas air tambak tersebut secara berkala. Di sini penulis menggunakan pH Probe kit untuk parameter dari pH (kadar ke asaman), DS18B20 (suhu) dan sensor turbidity (kadar kekeruhan air).

Salah satu tujuan pengguanaan dari pembuatan alat yang di buat penulis ini untuk objek tambak tradisonal yang terleetak di Desa Curahsawo, Kabupaten Probolinggo.

Potensi pembudidayannya besar sekali. Hanya yang penulis liat mereka banyak yang tidak berani untuk membudidayakannya. Karena banyak yang mencoba membudidayakannya tapi gagal. Salah satu faktor kegagalanya adalah tidak adanya monitoring kadar keasamannya (pH), suhu, dan kadar kekeruhannya. Kisaran nilai pH yang optimal untuk membudidayakan udang


vaname adalah 7,5-8,5. Untuk suhu berkisar 28-30 °C. Dan untuk kadar kekeruhannya bernilai 25-400 NTU

II. METODE PENELITIAN

A. Objek Penelitian

Objek penelitian ini terletak di salah satu Tambak di desa Curahsawo Kecamatan Gending, Kabupaten Probolinggo.

B. Desain Penelitian

Gambar. 2.1 Diagram alur perancangan

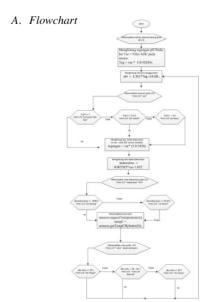
C. Metode Pengambilan Data

1. Observasi

Melakukan pengamatan dari permasalahan yang ada di lapangan yaitu di salah satu pemilik tambak di desa Curahsawo

2. Studi Pustaka atau Studi Literatur

Pengumpulan data dilakukan dengan mengumpulkan deratur dari beberapa buku, artikel yang berkaitan dengan prototype alat untuk mengukur pH, suhu, dan kadar kekeruhan air tambak untuk budidaya udang vaname menggunakan arduino uno. Penulis Mencari refrensirefrensi yang berkaitan dengan masalah yang akan diselesaikan,


3. Wawancara

Wawancara dilakukan untuk mendapatkan informasi dari narasumber yang terpercaya, baik secara lisan langsung atau melalui tatap muka. Tujuan dari wawancara adalah untuk mendapatkan informasi yang tepat dari narasumber yang terpercaya. Wawancara ini dilakukan oleh seorang pegelola tambak yaitu Bapak Timan di Desa Curahsawo.

D. Analisis Sistem

Pada tahap ini penulis melakukan analisis system yang datanya diambil dari metode pengambilan data. Lalu membandingkan penelitian yang sudah ada dan mencoba mengoptimalkannya sesuai pengamatan di lapangan, sebagai acuan untuk merancang dan membangun sesuai dengan kebutuhan yang ada. Lalu pada tahap selanjutnya adalah mendesain bagaimana prototype alat ini dibuat. Setelah itu dilanjutkan dengan mengimplementasinya dalam bentuk jadi alat dan melakukan pengkodean dan terakhir melakukan uji coba prototype alat tersebut.

III. HASIL DAN PEMBAHASAN

Gambar. 2.1 Diagram alur perancangan

}

```
B. Implementasi Flowchart
// LCD 20x 4
//LiquidCrystal lcd(18, 13, 22, 21, 20, 19);
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define I2C_ADDR 0x27 // Jika 0x3F tidak mau coba
gBakan 0x27 atau0x20
#define BACKLIGHT PIN
#define En_pin 2
#define Rw_pin 1
#define Rs_pin 0
#define D4_pin 4
#define D5_pin 5
#define D6_pin 6
#define D7_pin 7
LiquidCrystal_I2C
lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D
6 pin,D7 pin);
void setup() {
 lcd.begin (20,4);
 lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE);
 lcd.setBacklight(HIGH); // Nyalakan lampu backlight
 lcd.setCursor(0,0);
                         // tulis pada baris pertama lcd
 lcd.print("ANDRIK SETIYAWAN");
 lcd.setCursor(0,1);
                         // tulis pada baris kedua lcd
 lcd.print("UNIVERSITAS");
 lcd.setCursor (0, 2);
                         // tulis pada baris ke tiga lcd
 lcd.print("PANCA MARGA");
 lcd.setCursor(0, 3);
                        // tulis pada baris ke 4
 lcd.print("PROBOLINGGO 2020");
void loop() {}
rensor pH probe
const int analogInPin = A5;
int sensorValue = 0;
unsigned long int avgValue;
float b;
float pHVol;
int buf[15],temp;
void setup() {
Serial.begin(9600);
void loop() {
for(int i=0;i<14;i++)
buf[i]=analogRead(analogInPin);
delay(500);
for(int i=0;i<14;i++)
for(int j=i+1; j<10; j++)
if(buf[i]>buf[j])
temp=buf[i];
buf[i]=buf[j];
buf[j]=temp;
```

```
avgValue=0;
for(int i=1; i<15; i++)
avgValue+=buf[i];
float pHVol=(float)avgValue*5.0/1024/6;
float pHValue = -1.351*pHVol+14.68;
Serial.println(pHVol);
Serial.print("sensor pH = ");
delay (1000);
//sensor kekeruhan DFRobot
float tegangan; //data untuk tegangan
float kekeruhan; //data untuk nilai pembacaan satuan sensor
kekeruhan
void setup(){
lcd.begin(20, 4); // 20 baris, 4 kolom
lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE);
lcd.setBacklight(HIGH); // menghidupakan lampu lcd
lcd.setCursor(0,0);
lcd.print("");
lcd.setCursor(0,1);
lcd.print("sensor Turbidity");
delay(2000);
lcd.clear(); }
lcd.clear();
void loop()
int val = analogRead(A0); // membaca penginialisasi dari
pin A0 di arduino uno
tegangan = val* (5.0/1024); // konfersi nilai ADC ke
tegangan
kekeruhan = 0.003383*val-1.032; // konfersi dari nilai volt
ke kadar kekeruhan NTU
lcd.clear();
lcd.setCursor(0,0);
lcd.print(tegangan);
lcd.print(" V");
lcd.setCursor(0,1);
lcd.print(val);
lcd.print(" ADC");
lcd.setCursor(0,2);
lcd.print(kekeruhan);
lcd.print(" NTU");}
delay (1000); }
// sensor suhu DS18B20
#include <DallasTemperature.h>
#define ONE_WIRE_BUS 2
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);
float tempC = 0;
float tempF = 0;
void setup() {
sensors.begin();
Serial.begin(9600);
lcd.begin (20,4);
lcd.print("Pembacaan sensor ");
```

```
lcd.setCursor(0, 1);
lcd.print(" dalam C dan F ");
delay(1000);
void loop() {
sensors.requestTemperatures();
tempC = sensors.getTempCByIndex(0);
tempF = sensors.toFahrenheit(tempC);
delay(1000);
Serial.println(tempC);
lcd.setCursor(0,0);
lcd.print("C: ");
lcd.print(tempC);
lcd.print(" derajat");
lcd.setCursor(0,1);
lcd.print("F: ");
lcd.print(tempF);
lcd.print(" derajat"); }
```

C. Hasil Rancagan

1. Gambar Alat

Gambar. 3.1 Gambar alat

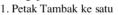
2. Pengujian Kalibrasi

A.pH

Gambar 3.2 Hasil Pengujian degan pH buffer 4.01

Gambar 3.3 hasil pengujian dengan nilai pH 7 B. Sensor kekeruhan

Gambar 3.4 sensor kekeruhan pada air bening



Gambar 3.8 sensor pH alat di tambak pada LCD

Gambar 3.9 pH meter digital di Tambak

Gambar 3.5 sensor turbidity pada air sedikit keruh C. Pegujian Alat Di Tambak

Gambar 3.6 Sensor DS18B20 di tambak

Gambar 3.7 temperatur alcohol di Tambak

Gambar 3.10 Hasil sensor turbidity

Gambar 3.11 Alat di tenpatkan 2. Petak Tambak ke dua

Gambar 3.12 sensor DS18B20

Gambar 3.13 termometer alcohol di Tambak

Gambar 3.14 sensor pH alat di tambak pada LCD

Gambar 3.15 pH meter digital di Tambak

Gambar 3.16 Hasil sensor turbidity

3. Petak Tambak ke tiga

Gambar 3.18 sensor DS18B20

Gambar 3.19 termometer alcohol di Tambak

Gambar 3.20 sensor pH alat di tambak pada LCD

Gambar 3.21 pH meter digital di Tambak

Gambar 3.22 Hasil sensor turbidity

Gambar 3.23 Alat di tenpatkan

4. Petak Tambak ke empat

Gambar 3.24 sensor DS18B20

Gambar 3.25 termometer alcohol di Tambak

Gambar 3.26 sensor pH alat di tambak pada LCD

Gambar 3.27 pH meter digital di Tambak

Gambar 3.28 Hasil sensor turbidity

Dalloud's and a second assessment

D.Tabel Perbandingan dan pembacaan

1. Perbandingan sensor

Tabel 1 Perbandingan sensor DS18B20 dan thermometer alkohol

Percobaan	DS18B20	Termometer alkohol
1	27.31°C	28.5°C
2	28.25°C	29°C
3	28.44°C	29.5°C
4	27.94°C	27°C

Tabel 2 Perbandingan sensor pH dan pH meter digital

Percobaan	Sensor pH	pH meter Digital
1	7,57	7,5
2	7,22	7,2
3	7,61	7,5
4	7,70	7,5

2. Hasil pembacaan

Tabel 3 Hasil pembacaan sensor turbidity

Percobaan	NTU	Keterangan
1	37,82 NTU	Bening
2	39,20 NTU	Bening
3	37,82 NTU	Bening
4	37,42 NTU	Bening

E. Analisa hasil pembacaan

Pada gambar hasil pengujian keseluruhan sebagaimana gambar diatas dan data hasil pembacaan sensor pada alat

dapat ditransfer dengan baik oleh sensor ke arduino dan ditampilkan menuju LCD. Dan dapat dilihat dengan data perbandingan dari thermometer alkohol dan uji menggunakan pH meter.

Hasil yang di dapat cukup akurat terutama dari sensor suhu. Sebab hasil yang di dapat dari thermometer alcohol tersebut masih kurang cukup akurat sedang alat uji pH masih menggunakan 2 digit angka. Sedang di probe sensor pHnya terbaca tiga digit. Dan untuk nilai kekeruhannya sendiri dapat terbaca sempurna. Serta hasil yang sudah di dapat oleh sensor pada LCD terdapat penginformasian ketika air tidak layak untuk tumbuh dan kembangnya udang vaname.

D. Kesimpulan 4

Membangun prototype alat untuk mengukur pH, suhu, dan kadar kekeruhan air tambak untuk budidaya udang vaname (Litopenaeus vannamei) menggunakan arduino uno saat diuji pada air tambak dapat terbaca di layar LCD. Dari 4 percobaan yang dilakukan diketahui rata – rata pH sebesar 7,45 dan suhu 27,9 oC hampir sama dengan pH dan suhu pembanding yaitu pH 7,43 dengan menggunakan pH meter digital dan suhu 28,5 C dengan menggunakan termometer alcohol. Sedangkan untuk nilai kekeruhan peneliti tidak mendapatkan uji pembanding yang presisi. Sehingga dapat disimpulkan bahwa alat ini berjalan sempurna. Namun untuk sensor kekeruhan masih belum teruji keakuratannya.

E. Saran

Pada saat pengerjaan alat tersebut, penulis menyadari bahwa masih banyak kekurangan yang terdapat pada sistem yang sudah penulis kerjakan. Maka dari itu, penulis menyarankan:

- 1. Untuk mendapatkan hasil yang stabil dapat menggunakan catu daya 12 volt dan menambah tegangan sendiri untuk sensor pH. Agar tegangan yang masuk stabil sehingga pembacaan nilai ADC oleh sensor stabil.
- 2. Penggunaan sensor kekeruhan (turbidity) harus mengkalibrasinya menggunakan pembanding uji dari lab atau meggunakan alat turbidity meter agar hasil yang didapat lebih presisi. Dan penggunaan sensor ini juga sebaiknya ditutup bagian atasnya agar cahaya matahari tidak menganggu proses pembacaan dari sensor tersebut.

DAFTAR PUSTAKA

- [1] Hamidah, Titin, dkk. Seminar Nasional Fortel Regional 7 Pemanfaatan Solar Cell sebagai Sumber Daya Pengendali Ekosistem Tambak Udang. Jurnal Universitas 17 Maret Surabaya.
- [2] Mo, Yos. 2017. Persyaratan air tambak yang baik. https://www.isw.co.id/post/2017/02/14/persyaratanair-tambak-yang-baik /. Diakses 2 Juli 2020.
- [3] Yuliati, Evi. 2009. Analisis Strategi Pengembangan Usaha Pembenihan Udang Vaname (Litopenaeus vannamei). Skripsi. IPB.

Jurnal 3

ORIGINALITY REPORT

14_%
SIMILARITY INDEX

17%
INTERNET SOURCES

8%
PUBLICATIONS

15% STUDENT PAPERS

PRIMARY SOURCES

1

www.arduinosantaefigenia.com.br

Internet Source

4% **4**%

2

Submitted to International Islamic University Malaysia

Student Paper

3

arduinomedan.blogspot.com

Internet Source

3%

4

repository.upm.ac.id

Internet Source

3%

Exclude quotes

On

Exclude matches

< 3%

Exclude bibliography O