Jurnal Prozima

by Haryono
Pemodelan Sistem Traceability Halal Supply Chain dalam Menjaga Integritas Produk Makanan Halal Dengan Pendekatan Interpretive Structural Modeling (ISM)

Haryono¹, Dwi Iryaning Handayani²
¹²Program Studi Teknik Industri,
Universitas Panca Marga Probolinggo
E-mail Address : haryono@upm.ac.id ¹, dwiiryaninghandayani@yahoo.co.id ²

Diterima : 28 November 2018 ; Disetujui : 05 Desember 2018

ABSTRAK
Kecurangan terhadap produk label halal pulsa disebabkan tidak terbukanya proses produksi halal secara menyeluruh di dalam supply chain dari hulu sampai hilir. Oleh karena itu dalam menjaga integritas produk halal perlu dilakukan penerapan traceability halal pada supply chain makanan sebagai tool yang efektif dalam menjaga kehalaan produk dan memastikan bahwa produk makanannya aman. Maka dari itu penelitian ini bertujuan membuat model sistem Traceability halal Supply Chain dalam menjaga integritas produk makanan halal. Metode yang digunakan dalam memodelkan sistem traceability halal supply chain dengan pendekatan Interpretive Structural Modeling (ISM). Adapun elemen sistem traceability halal supply chain meliputi halal procurement, halal manufacturing, halal logistics, halal distribution, supplier traceability, producer traceability, logistics traceability, distribusi traceability. Hasil pemodelan ISM dalam menjaga integritas produk halal terletak pada Quadrant IV Driver Power yaitu halal manufacturing, Producer traceability, supplier traceability, Quadrant III Strong Driver-Strongly Dependent Variabel (Linkage), elemen sistem Traceability halal Supply Chain yang termasuk masuk dalam quadrans ini akan mendukung keberhasilan integity produk halal dan memiliki ketergantungan yang kuat sebagai penggerak, quadrans ini meliputi halal procurement, distribusi traceability, halal logistik. Sedangkan sistem traceability halal supply chain yang tidak berpengaruh terhadap integrity produk halal masuk Quadrant II Driver Power yaitu: logistics traceability dan halal distribusi.

Kata kunci: Rantai Pasok, Halal, Integritas, Ditelusuri

ABSTRACT
Fraud of fake halal label products does not open halal production processes about the supply chain from upstream to downstream. Therefore, in product integrity agreements, it is necessary to implement traceability in the food supply chain as an effective tool in guaranteeing product halalness and ensuring that food products are safe. Therefore, this study tries to make a model of halal Supply Chain Traceability in the integrity agreement of halal food products. The method used in modeling the halal supply chain traceability system using Interpretive Structural Modeling (ISM). Elements of a halal supply chain tracking system, in addition to halal procurement, halal manufacturing, halal logistics, halal distribution, supplier traceability, producer traceability, logistics traceability, distribution traceability. ISM Modeling results in the integration of halal products are located in Quadrant IV Driver Power with halal manufacturing, producer traceability, supplier traceability, Quadrant III Strong-Very Driver Depends on Variables (Linkage), Traceability system elements of the halal supply chain that are in accordance with this Quadrant will be sought integrity of halal products and has strong advantages as a driver, this quadrant contains halal procurement, traceability distribution, halal logistics. Whereas the halal supply chain traceability system that is not related to the integrity of halal products comes in. Quadrant II Driver Power namely: halal logistics and distribution traceability.

Keywords: Supply Chain, Halal, Integrity, Traceability

© 2018 Universitas Muhammadiyah Sidoarjo. All Right reserved. This is an open access article under the CC BY licence (http://creativecommons.org/licenses/by/4.0/)
PENDAHULUAN

Traceability halal dapat digunakan sebagai media untuk melacak status kehalalan dari suatu produk makanan, dengan cara merekam semua informasi kegiatan dalam menghasilkan produk makanan hala yang asal usul bahan baku sampai dengan hilir [1]. Semua kegiatan aliran informasi mulai dari hilir sampai hilir dapat diterima dan terdokumentasi dengan baik sehingga dapat memberikan transparansi terhadap produk halal [2]. Selain itu sistem traceability halal dapat menjamin keamanan pangan, kepastian produk dan meningkatkan tingkat kepercayaan konsumen terhadap produk halal.

Dengan pemilki sistem Traceability halal, titik kontrol halal dapat dipantau sepenuhnya jika produk tersebut diduga terkontaminasi unsur non-halal dan informasi secara terperinci dapat diterima sehingga titik kontaminasi dideteksi dan dapat dilakukan tindakan lebih lanjut. Mengingat penduduk Indonesia mayoritas muslim memiliki pertimbangan kehalalan atas produk dan dikonsumsinya, dengan terjaminnya makanan halal maka aspek mutu lain sudah pasti terpenuhi [3]. Sehingga produk dengan jaminan halal merupakan persyaratan utama untuk dapat diterima dengan baik oleh konsumen muslim di Indonesia [4].

Akan tetapi label halal tidak selalu menjamin kehalalan produk yang berada dalam kemasan. Penderaan produk berlabel halal palsu cukup tinggi berkisar 40%–50% dari total 113.515 unit [5]. Hal ini terbukti dengan adanya produk abon dan dendeng dipasaran bermodifikasi sertifikat halal dari MUI masih beredar di masyarakat. Disamping itu penyalahgunaan label halal juga sering dilakukan produsen curang, kecurangan berupa pengganti komposisi bahan setelah mendapatkan sertifikasi halal atau memalsukan label halal pada produknya [6]. Bahkan produk makanan yang beredar dipasaran dicuri mengandung babi karena kandungan gelatin, shortening dan lard yang terbuat dari limbah babi (kulit dan tulang babi) [7]. Penggunaan komponen lemak babi, meskipun prosentasinya kecil didalam bahan pangan, akan menyebabkan makanan tersebut menjadi tidak halal untuk dikonsumsi [8].

Kecurangan terhadap produk label halal palsu disebabkan tidak terbukanya proses produksi halal secara menyeluruh di dalam supply chain dari hilir sampai hilir. Oleh karena itu dalam menjaga integritas produk halal perlu dilakukan penerapan traceability halal pada Supply Chain makanan sebagai tool yang efektif dalam menjamin kehalalan produk dan memastikan bahwa produk makanannya aman (food safety) [9]. Sistem popular ini dapat diandalkan dalam meningkatkan transparansi halal dan menguatkan integritas produk halal, dengan cara menggunakan pendekatan Interpretive Structural Modeling (ISM) untuk memodelkan sistem traceability halal supply chain [10].

Metode ISM membentuk model sistematis yang kompleks menggambarkan struktur dari masalah. Disamping itu ISM membantu dalam menentukan urutan dan tujuan pada hubungan yang kompleks antar elemen dalam sistem [11] sehingga banyak penelitian yang menggunakan metode ISM, untuk mengetahui mitigasi dalam mengurangi risiko kecelakaan kerja proyek konstruksi, metode ISM dalam mitigasi risiko Supply Chain selain itu metode ISM digunakan untuk menentukan faktor-faktor yang mempengaruhi dalam implementasi rencana strategis dalam meningkatkan layanan dan kepuasan pasien [13]. ISM dalam mengidentifikasi dan memodelkan hambatan kritis terhadap cloud pada UMKM [14]. Dengan demikian ISM banyak digunakan oleh sejumlah peneliti dalam menyelesaikan masalah yang kompleks. Sehingga penelitian ini akan menggunakan ISM dalam mengidentifikasi hubungan antar variabel diantar elemen-elemen suatu sistem yang terkait dengan sistem traceability halal, maka dari itu penelitian ini bertujuan membuat model sistem Traceability halal Supply Chain dalam menjaga integritas produk makanan halal.

METODE

Penelitian ini dilakukan di UKM makanan yaitu bakso ikalan, dengan menggunakan metode pendekatan Interpretive Structural Modeling (ISM) dalam membuat model sistem traceability halal supply chain. ISM menguraikan elemen dari sistem traceability halal supply chain menjadi bagian yang terkecil dan membuat keterkaitan antara elemen-elemen yang terdapat pada suatu situasi menjadi sebuah model dari kaidah yang diteliti.
untuk dianalisa. Model yang dihasilkan kemudian digunakan untuk membunyai ide-ide dan solusi terhadap permasalahan yang dihadapi. Tahapan dalam menggunakan metodologi ISM dijelaskan di bawah ini:

1. Menentukan elemen-elemen yang relevan dengan sistem traceability halal supply chain. Tahapan awal yang dilakukan dengan mengidentifikasi elemen-elemen yang relevan dengan permasalahan, hal ini dilakukan dengan melakukan penelitian sekunder atau penelitian primer seperti survei, FGD (Focus Group Decision).

2. Menentukan ipe relasi secara kontekstual
 Relasi kontekstual ditentukan berdasakan elemen-elemen dengan cara membandingkan elemen-elemen sistem traceability halal dalam matrik relasi menggunakan hubungan kontekstual, yang sebagian besar merupakan kata kerja generik tipikal yaitu mempengaruhi, penyebab dan kata kerja mengarah membandingkan lebih penting diantara masing-masing elemen sistem traceability.

3. Membuat Structural-Interaction Matrix (SSIM) dengan cara perbandingan keterkaitan berpasangan (pairwise comparison)
 Tahap ini melakukan hubungan berpasangan antara elemen. Dengan memperhatikan hubungan kontekstual untuk setiap elemen, adanya hubungan antara dua sub-elemen (i dan j) dari arah hubungan yang terkait dipertanyakan [115].
 Simbol digunakan untuk menunjukkan arah hubungan antara elemen i dan j:
 - V untuk hubungan dari i ke j tetapi tidak di kedua arah;
 - A untuk hubungan dari i ke j tetapi tidak di kedua arah;
 - X untuk hubungan kedua arah dari i ke j dan j ke i;
 - O jika hubungan antar elemen tampaknya tidak valid.

4. Membuat Reachability Matrix (RM) dan menimerika transitivity
 Pada fase keenam ini berkaitan dengan pembangunan matriks reachability M. Matrik ini biner karena entri V, A, X dan O dari SSIM dikonversi menjadi 1 dan 0 sesuai dengan aturan sebagai berikut:
 a) Jika relasi (i, j) dinotasikan sebagai V maka masukan (i, j) pada RM menjadi 1 dan (j, i) menjadi 0
 b) Jika relasi (i, j) dinotasikan sebagai A maka masukan (i, j) pada RM menjadi 0 dan (j, i) menjadi 1
 c) Jika relasi (i, j) dinotasikan sebagai X maka masukan (i, j) pada RM menjadi 1 dan (j, i) menjadi 1
 d) Jika relasi (i, j) dinotasikan sebagai O maka masukan (i, j) pada RM menjadi 0 dan (j, i) menjadi 0

5. Menentukan level partitionary dari reachability matrix
 Di fase ini melibatkan ekstraksi dari pengurutan secara hierarkis dari RM dengan mempartisi berdasarkan level (level partitioning). Tujuan fase ini adalah menjadi masukan awal bagi pembuatan digraph dari RM. Partisi tingkat (level partition) membandingkan sejumlah elemen di si di su. Reachability set R(s) terdiri dari elemen itu sendiri dan unsur-unsur lain yang bisa dijangkau dari s,. Demikian pula ada beberapa elemen yang menjangkau elemen s,. yang ditetapkan sebagai yang mendahului (antecedent) A(s). Kemudian, interaksi dari sejumlah reachability dan sekumpulan antecedent (R(s) \ A(s)), Element yang merupakan R(s) = R(s) \ A(s)
 A(s) adalah elemen teratas dari hierarki ISM. Elemen teratas tidak memiliki relasi ke elemen lainnya diatas tingkatannya. Ketika elemen teratas teridentifikasi maka mereka terpisah dari elemen-elemen yang lain. Kemudian proses yang sama mengulangai iterasi sampai dengan tingkat dari semua elemen tercapai. Identifikasi tingkatan (level) ini membantu dalam pembangunan digraph dan model akhir ISM.

3. Menggambarkan digraph dengan hubungan transitivity yang telah dihapus.
 Digraph awal termasuk didalamnya relasi transitivity diperoleh dari bentuk konikal dari RM. Matrik konikal didapat dari partisi RM dengan pengaturan elemen menurut tingkatannya, yang berarti semua elemen yang ada
berada di tingkatan yang sama dikumpulkan, elemen dengan kebanyakan unsur nol (0) pada paruh diagonal atas matriks dan elemen dengan kebanyakan unsur 1 di bagian bawah sisanya. Demi kesederhanaan relasi transitivity, dihilangkan untuk mendapatkan digraph akhir. Jika ada hubungan antara risiko i dan j, ini ditunjukkan oleh panah yang menunjuk dari i ke j.

7. Mengkonversi graph ke ISM dan menekan inksistem secara konseptual.
 Hasil digraph dari fase ini di konversi menjadi ISM dengan menghilangkan keterangan dari titik elemen.
 Akhirnya model ISM di cek untuk kompatibilitasinya.

HASIL DAN PEMBAHASAN

Identifikasi Elemen Traceability Halal Supply Chain

Halal adalah sesuatu yang diajarkan menurut hukum Islam sedangkan yang tidak diajarkan tergolong haram, berdasarkan Alquran 2:168 makanan halal harus bebas dari komponen apapun yang dilarang untuk dikonsumsi oleh umat Islam. Halal Food Supply Chain menjamin integritas produk awal yang dimulai dari hulu sampai hilir yang meliputi :

1. Fase baku perikanan, pada fase input air kolam, pakan dan produk-produk keselahan hewan yang digunakan harus sesuai dengan persyaratan hukum Islam. Misalnya Air budidaya ikan tawar harus aman dan tidak disekat peternakan babi serta terkontaminasi dengan limbah dari peternakan babi.

3. Fase pembrosesan, pada fase ini semua babutama, bahan penunjang, peralatan produksi harus halal, aman dan digunakan sesuai dengan ketentuan persyaratan hukum halal, pengemasan dan pelabelan harus jelas dan jujur tidak ada pemalsuan atau salah label.

5. Fase Logistik, penyedia layanan logistik mempunyai peran penting dalam memastikan bahwa bahan baku, bahan, bahan pengemasan, penyimpanan dan pengangkutan produk halal dilakukan agar tidak terkontaminasi produk haram.

Untuk integritas produk halal dibutuhkan informasi pengenai kegiatan dalam menghasilkan produk, mulai dari asal usul bahan baku sampai distribusi produk yang bertujuan agar status halal dari produk halal dapat dikelola. Maka dari itu perlu adanya penerapan sistem traceability untuk melacak status halal. Dengan memiliki sistem traceability, titik kontrol halal dapat dipantau sepenuhnya jika produk tersebut diduga terkontaminasi unsur non-halal dan informasi secara terperinci dapat ditemukan sehingga titik kontaminasi di identifikasi dan dapat dilakukan tindakan lebih lanjut. Oleh karena itu dibutuhkan identifikasi elemen sistem traceability dalam menangani integrity produk halal.

Identifikasi dilakukan mulai dari hulu sampai hilir dengan memperhatikan 1) tahapan proses dalam membuat produk bakeso ikan, 2) mengklasifikasikan posisi halal untuk mengetahui letak posisi halal apakah posisi halal produk (procurement) atau Halal produksi, Halal pengiriman, 3) halal check point yang bertujuan untuk mengatasi sumber kehalalan, 4) pelaku merupakan yang bertanggung jawab terhadap status halal tersebut, 5) Status traceability merupakan kondisi sistem pelacuan apakan masuk internal atau eksternal. Identifikasi elemen traceability dalam integrity produk halal selengkapnya dapat dilihat pada Tabel 1 sedangkan Gambor 2 merupakan kegiatan aktivitas sistem traceability halal supply chain.

Pemodulan Sistem Traceability Halal Supply Chain dalam Menjaga Integritas Produk Makanan Halal Dengan Pendeekatan Interpretive Structural Modelling (ISM) / Haronyo & Dwi Iryaning Handayani
Peer reviewed under responsibility of Universitas Muhammadiyah Sidoarjo.
© 2018 Universitas Muhammadiyah Sidoarjo. All Right reserved. This is an open access article under the CC BY licence (http://creativecommons.org/licenses/by/4.0/)
Elemen halal Supply Chain

1) Halal procurement didefinisikan sebagai pembelian halal, yang terdiri dari keterlibatan dalam kegiatan yang berfokus pada perlindungan integritas halal di seluruh supply chain. Untuk setiap kegiatan sumber dalam supply chain halal, identifikasi semua input, produk sampingan, dan sumber daya sangat penting untuk memastikan integritas halal.

2) Halal manufaktur sebagai proses transformasi bahan atau input halal dengan menggunakan prosedur halal pada produk halal. Manufaktur halal dapat mengebabkan integritas halal yang lebih tinggi dan mengurangi risiko kontaminasi silang.

3) Distribusi halal terdiri dari pengemasan halal dan wadah halal. Karakteristik pengemasan seperti bahan berdampak pada kualitas produk. Di antara masalah yang telah diangkat dalam kemasan adalah keberadaan halal pada kemasan, metode halal penanganan produk, dan keterlambatan halal kemasan [18].

4) Halal Logistik mencakup pengorganisasian, perlindungan, dan identifikasi produk dan bahan sebelum mencapai pelanggan. Peran pengemasan dalam logistik adalah untuk mengendalikan dan melindungi barang selama pengiriman dan distribusi [18]. Kemampuan logistik halal sangat penting dalam memastikan integritas rantai pasok halal dari pertanian sampai ke konsumen [19].

Elemen Halal Traceability

Suplier traceability merupakan pemasok bahan mentah ke produsen makanan yang sesuai syariah dan persyaratan halal. Informasi terperinci tentang bahan baku halal perlu disampaikan melalui pelabelan dan penandaan. Hal ini untuk memastikan makanan tidak akan terkontaminasi secara keliru atau bercampur dengan produk non halal selama distribusi.

Logistik traceability adalah proses mengelola pengadaan, pergerakan, penyimpanan, dan penanganan bahan, persediaan setengah jadi atau jadi, baik makanan maupun non-makanan [21]. Informasi dan dokumentasi terkait mengalir melalui organisasi dan aliran supply chain dengan prinsip-prinsip umum Syariah. Hal ini menunjukkan
bawah penelusuran logistik halal melibatkan setiap aspek supply chain, dari hulu hingga hilir [21]. Selain itu, arus kendaraan masak (misalnya truk, kontainer) harus dipantau untuk menghindari pencampuran produk halal dan non-halal.

Tabel 1. Identifikasi Elemen Traceability Dalam Integrity Produk Halal

<table>
<thead>
<tr>
<th>Tahapan</th>
<th>Klasifikasi Halal</th>
<th>Halal Check Point</th>
<th>Informasi Traceability</th>
<th>Pelaku</th>
<th>Status Traceability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase Hula</td>
<td>Halal Procurement</td>
<td>Bahan Baku Utama</td>
<td>Input pengiriman dari supplier</td>
<td>Supplier</td>
<td>Internal Traceability Eksternal Traceability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bahan Baku penunjang</td>
<td>Kode pencatatan traceability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penyimpanan kode traceability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase pemesanan</td>
<td>Halal Manufacturing</td>
<td>Proses Produksi</td>
<td>Kode traceability pada proses</td>
<td>Food Proses Industry</td>
<td>Internal Traceability Eksternal Traceability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packing</td>
<td>Kode Packing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labeling</td>
<td>traceability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase penyimpanan</td>
<td>Halal Logistik</td>
<td>Penyimpanan</td>
<td>logistik kode traceability paling lama</td>
<td>Distributor</td>
<td>Internal Traceability Eksternal Traceability</td>
</tr>
<tr>
<td>Fase Logistik</td>
<td>Halal Distribusi</td>
<td>Distribusi</td>
<td>Renalan</td>
<td>Retailer</td>
<td>Internal Traceability Eksternal Traceability</td>
</tr>
</tbody>
</table>

Interpretive Structural Modeling (ISM)

Elemen traceability halal supply chain dalam integrity produk halal terdiri dari 8 faktor utama yaitu : halal Procurement, Halal Manufacturing, halal Logistik, Halal Distribusi, Supplier traceability, producer traceability, distribusi traceability, logistik traceability maka untuk mengetahui hubungan keterkaitan antar variabel didiskusikan dengan pamer. Hasil diskusi dalam memberikan pandangan tentang hubungan pada masing-masing elemen traceability dimasukkan ke dalam Structural Self-Interaction Matrix (SSIM) dengan cara perbandingan keterkaitan berpasangan (pairwise comparison). Tabel 2 menjelaskan hubungan keterkaitan antara elemen traceability halal supply chain dengan menggunakan empat simbol

| Tabel 2. SSIM Keterkaitan Elemen Traceability Halal Supply Chain |
|------------------|---------|--------|--------|--------|--------|--------|--------|
| No Variabel | X | 7 | 6 | 5 | 4 | 3 | 2 |
| 1 Halal Logistik | A | A | X | X | A | X | V |
| 2 Halal Distribusi| O | X | X | X | A | X | - |
| 3 Halal Procurement| O | X | X | V | A | - | |
| 4 Halal Manufacturing| A | X | X | O | V | - | |
| 5 Logistik Traceability| A | X | X | - | | | |
| 6 Distribusi traceability| A | X | - | | | | |
| 7 Supplier Traceability| O | - | | | | | |
| 8 Producer Traceability| - | - | | | | | |

Reachability matrix (RM)

Tahap selanjutnya adalah membuat reachability matrix (RM), yaitu mengubah SSIM menjadi matriks biner. Yg dilakukan adalah mengkonversi simbol V, A, X dan O dengan angka 0 dan 1 dengan mengikuti aturan sebagai berikut:

Jika hubungan Ei terhadap Ej=V dalam SSIM, maka elemen Eij=1 dan Eji=0 dalam RM
Jika hubungan Ei terhadap Ej=A dalam SSIM, maka elemen Eij=0 dan Eji=1 dalam RM
Jika hubungan Ei terhadap Ej=X dalam SSIM, maka elemen Eij=1 dan Eji=1 dalam RM
Jika hubungan Ei terhadap Ej=0 dalam SSIM, maka elemen Eij=0 dan Eji=0 dalam RM

Pemodalan Sistem Traceability Halal Supply Chain dalam Menjaga Integritas Produk Makanan Halal Dengan Pendekatan Interpretive Structural Modeling (ISM) / Haryono & Dwi Irianingsih Handayani

Peer reviewed under responsibility of Universitas Muhammadiyah Sidoarjo.

© 2018 Universitas Muhammadiyah Sidoarjo. All Right reserved. This is an open access article under the CC BY licence (http://creativecommons.org/licenses/by/4.0/)
Hasil konversi SSM menjadi reachability matrix secara keseluruhan dapat di lihat pada Tabel 3.

<table>
<thead>
<tr>
<th>Tabel 3. Reachability Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabel</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Dependence</td>
</tr>
</tbody>
</table>

Level Partition

Level partition berdasarkan hasil dari reachability matrix, level partition merupakan tahapan ketiga dari metode ISM. Hasil pengolahan ini untuk menghasilkan setiap level dimulai variabel i. Reachability bisa dibuat apabila variabel horizontal 1 mempunyai nilai 1 sama dengan 1. Antecedent bisa dibuat apabila dari variabel vertikal 1 mempunyai nilai 1 sama dengan 1. Intersection set merupakan hasil dari angka recabilitas dan antecedent yang sama.

<table>
<thead>
<tr>
<th>Tabel 4. Level Partition Iterasi 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabel</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 5. Level Partition Iterasi 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabel</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 6. Level Partition Iterasi 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabel</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 7. Final Reachability matriks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabel</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Pemodalan Sistem Traceability Halal Supply Chain dalam Menjaga Integritas Produk Makanan Halal Dengan Pendekatan Interpretive Structural Modeling (ISM) / Haryono & Dwi Iryaningsih Handayani
Peer reviewed under responsibil of Universitas Muhammadiyah Sidoarjo.
© 2018 Universitas Muhammadiyah Sidoarjo. All Right reserved. This is an open access article under the CC BY licence (http://creativecommons.org/licenses/by/4.0/)
Setelah dilakukan partition level tahap selanjutnya adalah membuat Canonical Matrix (Lower Triangular Format) dengan menyusun variabel berdasarkan level yang ada pada Reachability Matrix Final. Canonical Matrix ini akan membantu dalam pembuatan Diagraph Structural Model. Canonical Matrix yang sudah disusun dapat dilihat pada Tabel 8.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>1</th>
<th>3</th>
<th>3.4.7.8</th>
<th>3</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>2</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>3</td>
<td>3.7</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>4</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>5</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>6</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>7</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>8</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>9</td>
<td>3.4.7.8</td>
<td>3.4.7</td>
<td>3.4.7.8</td>
<td>3</td>
<td>III</td>
</tr>
</tbody>
</table>

Tabel 8 Canonical matrik

MICMAC ANALYSIS

MICMAC analysis yang membungk Driver Power dan Dependence, mengklasifikasikan variabel menjadi 4 bagian yaitu driver, linkage, autonomous dan dependent[12]. Dependence dari variabel-variabel digambarkan pada gambar 3 yang terdiri dari empat quadrant. Quadrant IV mempunyai driver power yang tinggi, sehingga variabel ini memiliki kekuatan untuk mempengaruhi variabel lainnya didalam sistem dan sebagai kunci utama didalam integrity produk halal. Quadrant ini terdiri dari tiga elemen sistem traceability yaitu halal manufacturing, Produser traceability, supply traceability.

Quadrant II mempunyai Driver Power yang rendah sehingga variabel ini tidak memiliki kekuatan untuk mempengaruhi variabel lain didalam sistem. Quadrant ini meliputi logistik traceability dan halal distribusi. Quadrant I Weak driver-weak dependent variable (autonomus), quadrant ini memiliki pengaruh yang relatif kecil atau tidak ada kaitannya. Quadrant ini memiliki daya penggerak yang lemah serta ketergantungan dan relatif terlepas dari sistem yang hampir tidak memiliki tautan.

Pemodelan Sistem Traceability Halal Supply Chain dalam Menjaga Integritas Produk Makanan Halal Dengan Pendekatan Interpretive Structural Modeling (ISM) / Haryono & Dwi Iryaning Handayani

Peer reviewed under responsibility of Universitas Muhammadiyah Sidoarjo.

© 2018 Universitas Muhammadiyah Sidoarjo. All Right reserved. This is an open access article under the CC BY licence (http://creativecommons.org/licenses/by/4.0/)

77
KESIMPULAN

Pemodelan sistem traceability halal Supply Chain dalam menjaga integritas produk halal terletak pada Quadrant Driver Power yaitu halal manufacturing, Producer traceability, supplier traceability, Quadrant Strong Driver-Strongly Dependent Variabel (Linkage), elemen sistem Traceability halal Supply Chain yang termasuk masuk dalam quadrant ini akan mendukung keberhasilan integrit produk halal dan memiliki ketergantungan yang kuat sebagai penggerak, quadrant ini meliputi halal procurement, distribusi traceability, halal logistik. Sedangkan sistem traceability halal supply chain yang tidak berpengaruh terhadap integrit produk halal masuk Quadrant II Driver Power yaitu: logistik traceability dan halal distribusi.

Pemodelan Sistem Traceability Halal Supply Chain dalam Menjaga Integritas Produk Makanan Halal Dengan Pendekatan Interpretive Structural Modeling (ISM) / Haryono & Dwi Iryaning Handayani
Peer reviewed under responsibility of Universitas Muhammadiyah Sidoarjo.
© 2018 Universitas Muhammadiyah Sidoarjo. All Rights reserved. This is an open access article under the CC BY licence (http://creativecommons.org/licenses/by/4.0/)
DAFTAR PUSTAKA

Originality Report

Similarity Index

<table>
<thead>
<tr>
<th>Source Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity Index</td>
<td>14%</td>
</tr>
<tr>
<td>Internet Sources</td>
<td>14%</td>
</tr>
<tr>
<td>Publications</td>
<td>9%</td>
</tr>
<tr>
<td>Student Papers</td>
<td>12%</td>
</tr>
</tbody>
</table>

Primary Sources

<table>
<thead>
<tr>
<th>Source Category</th>
<th>Percentage</th>
<th>Source URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Source</td>
<td>4%</td>
<td>docobook.com</td>
</tr>
<tr>
<td>Internet Source</td>
<td>4%</td>
<td>edoc.pub</td>
</tr>
<tr>
<td>Internet Source</td>
<td>3%</td>
<td>mmt.its.ac.id</td>
</tr>
<tr>
<td>Internet Source</td>
<td>1%</td>
<td>id.123dok.com</td>
</tr>
<tr>
<td>Student Paper</td>
<td>1%</td>
<td>Submitted to IAIN Surakarta</td>
</tr>
<tr>
<td>Student Paper</td>
<td>1%</td>
<td>Submitted to Curtin University of Technology</td>
</tr>
<tr>
<td>Internet Source</td>
<td>1%</td>
<td>journals.ums.ac.id</td>
</tr>
</tbody>
</table>

Exclude quotes: On
Exclude bibliography: On
Exclude matches: < 1%